• Title/Summary/Keyword: Field validation

Search Result 748, Processing Time 0.027 seconds

Use of NIR Soil Analyzer for Measuring Chemical Properties of Field Soil (근적외 토앙분석기를 이용한 토양의 이화학적 성질분석)

  • Ryu, Kwan-Shig;Cho, Rae-Kwang;Park, Woo-Churl;Kim, Bok-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.4
    • /
    • pp.278-283
    • /
    • 2001
  • The overall objective of this research was to show a NIR soil analyzer assessing soil fertility by measuring soil properties rapidly. A total of 140 soil samples were used to obtain calibrations and validation estimating soil properties. The soil samples were ground to pass 0.2mm sieve openings. Partial least square regression analysis was used to develop a calibration for soil analysis. The results indicated that NIR soil analyzer could be used as a routine method for quantitatively determining pH, OM, total nitrogen, CEC, extractable Ca, Mg, K, available $SiO_2$ and soil moisture simultaneously within one minute. Therefore, the NIR soil analyzer may be suitable for quick estimation of soil fertility estimation in fertilizer assessments.

  • PDF

Development of an Interface Module with a Microscopic Simulation Model for COSMOS Evaluation (미시적 시뮬레이터를 이용한 실시간 신호제어시스템(COSMOS) 평가 시뮬레이션 환경 개발)

  • Song, Sung-Ju;Lee, Seung-Hwan;Lee, Sang-Soo
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.2 s.73
    • /
    • pp.95-102
    • /
    • 2004
  • The COSMOS is an adaptive traffic control systems that can adjust signal timing parameters in response to various traffic conditions. To evaluate the performance of the COSMOS systems, the field study is only practical option because any evaluation tools are not available. To overcome this limitation, a newly integrated interfacing simulator between a microscopic simulation program and COSMOS was developed. In this paper, a detector module and a signal timing module as well as general feature of the simulator were described. A validation test was performed to verify the accuracy of the data flow within the simulator. It was shown that the accuracy level of information from the simulator was high enough for real application. Several practical comments on further studies were also included to enhance the functional specifications of the simulator.

Analysis of 3D GIS- Based GNSS Visibility at Urban Area (도심에서의 3차원 GIS 기반 위성항법시스템 가시성 분석)

  • Yoo, Kyung-Ho;Kang, Tae-Sam;Sung, Sang-Kyung;Lee, Eun-Sung;Jeong, Seong-Kyun;Sin, Cheon-Sig;Lee, Sang-Uk;Lee, Young-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1095-1100
    • /
    • 2007
  • Visibility of the satellite navigation is related to a environmental condition of a receiver. Obstacles like buildings and trees in urban areas can block signals and have effects on accuracy and reliability of positioning. This paper presents a method of creating 3D analysis model of urban canyon of Seoul using three-Dimensional digital map. Analysis techniques of visible satellites with Ray-Polygon Collision Detection and validation of algorithm through field tests are discussed. We have compared and analyzed the visibility of GPS and Galileo with respect to separate and simultaneous tracking in view of DOP (Dilution of Precision) using the 3D GIS digital map.

Development and Application of the GIS-based Global Cadastral Non-coincidence Surveying Method for the Cadastral Re-survey (지적재조사를 위한 GIS 기반의 광역 지적불부합지 조사 기법의 개발과 적용)

  • Hong Sung Eon;Yi Seong Kyu;Park Soohong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.1
    • /
    • pp.19-30
    • /
    • 2005
  • Korean government has constructed a nationwide cadastral map database through the cadastral map computerization project and also produced a variety of spatial data through the NGIS (National Geographic Information Systems) project. Under this circumstance, it is needed to set up the new automatic methodology that effectively solve cadastral non-coincidence problems by using various digital map data instead of expensive field survey methods. This study proposed a new automatic methodology for cadastral non-coincidence surveying and developed a prototype system as a proof of concept. Validation of this proposed method was done with some test areas. Results showed that this methodology could easily detect and assess both regional non-coincidence levels and cadastral map quadrangle non-coincidence levels. We expect that this new methodology can provide many benefits in planning and determining work priority of the forthcoming nationwide cadastral re-surveying project.

Stable Isotope Studies for Constraining Water and Carbon Cycles in Terrestrial Ecosystems: A Review (안정 동위원소를 이용한 육상 생태계의 물과 탄소의 순환 연구: 재검토)

  • Lee Dongho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.1
    • /
    • pp.15-27
    • /
    • 2005
  • The water and carbon cycles in terrestrial ecosystems are the essential database for better understanding of the causes and the current processes of climate change and for the prediction of its future change. CarboKorea and HydroKorea are dedicated research efforts to develop technologies to quantitatively interpret and forecast carbon/water cycles in typical landscapes of Korea. For this, stable isotope studies have been launched to genetically partition various components of carbon/water cycles in terrestrial ecosystems. From stable isotope studies, practical deliverables such as evaporation, transpiration and gross primary productivity (GPP) can be provided at scales from tower (footprint) to large watersheds. Such reliable field-based information will form an important database to be used for validation of the results from various eco-hydrological models and satellite image analysis which constitute main components of Carbo/HydroKorea project. Stable isotope studies, together with other relevant researches, will contribute to derive quantitative interpretation of carbon/water cycles in terrestrial ecosystems and support Carbo/HydroKorea to become a leading research infrastructure to answer pending scientific and socio-economic questions in relation to global changes.

A Systems Engineering Approach to FEED Work Process Development for Refinery Plant (시스템 엔지니어링 접근 방법에 의한 정유 플랜트의 FEED 수행 업무 프로세스 개발)

  • Kim, Sun Young;Cha, Jae-Min;Kim, Junpil;Suh, Suk-Hwan;Sur, Hwal Won
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.1-15
    • /
    • 2014
  • Refinery plant producing petroleum products from crude oil has significantly contributed to the creation of the national interests as a leading engineering industries. However, domestic Engineering Procurement Construction (EPC) companies are facing heavy competition for orders. Domestic EPC companies as EPC contractors are faced with some problems such as undertaking responsibility for FEED packages produced by other FEED companies. But domestic EPC contractors are unfamiliar to development and validation of FEED packages. It causes poor profitability and lower competitiveness of domestic companies. It is necessary for domestic companies to have capability to perform FEED activities in order to overcome these limitations instead of focusing on EPC phase after FEED phase. The systematic procedure is needed to perform the FEED activities, however, there are present difficulties on it due to the lack of experience in FEED packages development which require various engineering knowledge of chemical process, mechanics, electrics, instrumentation, civil engineering. This study has applied systems engineering method which is multi-disciplinary approach to derive and verify the solution to meet the customer's needs when the complex system is developed to task execution process development of FEED activities for refinery plant. The problems that may occur in the future were identified in advance by taking into account the various stakeholders and system context through the application of systems engineering. It helps to develop the task execution process systematically. The developed task execution process of FEED activities is planned to make effectiveness verified by engineering professionals experienced in FEED and continually enhance this process by field application.

REMOTE SENSING OF THE CHINA SEAS AT ORSI/OUC

  • HE, Ming-Xia;Zeng, Kan;Chen, Haihua;Zhang, Tinglu;Hu, Lianbo;Liu, Zhishen;Wu, Songhua;Zhao, Chaofang;Guan, Lei;Hu, Chuanmin
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.11-14
    • /
    • 2006
  • We present an overview on the observation and research for the China seas using both field experiments and multi-sensor satellite data at ORSI/OUC, covering two topics: (1) Spatial and temporal distribution of internal waves in the China Seas and retrieval of internal wave parameters; (2) Retrieval, validation, and cross-comparison of multi-sensor ocean color data as well as ocean optics in situ experiments in the East China Sea. We also present an incoherent Doppler wind lidar, developed by ORSI, and its observation for marine-atmospheric boundary layer.

  • PDF

A Design and Implementation of Intelligent Self-directed learning APP for Considering User Learning Level (학습 수준정보를 반영한 지능형 자기 주도 학습 앱 설계 및 구현)

  • Lee, Hyoun-Sup;Kim, Jin-Deog
    • The Journal of Korean Association of Computer Education
    • /
    • v.16 no.4
    • /
    • pp.55-62
    • /
    • 2013
  • Most of the APP market today, it is biased in the field of games and entertainment. In contrast, market-share of the educational APP is very low. This phenomenon is due to two major problems. The first is a decrease in the reuse because of the test of simple pattern. The second is difficult to consider user-level range that was learned previously. In this case it is necessary for students to do additional effort. This paper, propose an educational intelligent educational APP to solve the problems described above and shows implementation results. This system analyzes the stored results that have been saved to determine the area of vulnerability. Time-based Re-validation module helps long-term memory of student. The proposed system in this way directly supports self-directed learning. Therefore, the students can be able to relearn weak area autonomously. It results in improved academic achievement.

  • PDF

Assessment of the Distributional Probability for Evergreen Broad-Leaved Forests(EBLFs) Using a Logistic Regression Model (로지스틱 회귀모형을 이용한 상록활엽수림 생육분포 확률 평가)

  • YOO, Byung-Oh;PARK, Joon-Hyung;PARK, Yong-Bae;JUNG, Su-Young;LEE, Kwang-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.1
    • /
    • pp.94-105
    • /
    • 2016
  • This study was carried out to assess the distributional probability for Evergreen Broad-Leaved Forests(EBLFs) using the field data and digital climate data that were occurred during the period of 1980 to 2010. For the validation of logistic regression model, the probabilistic value ranged from 33 to 84%, especially the probabilistic value of growing distribution becomes lower patterns with higher altitude. In addition, it has been estimated that the probabilistic value of growing distribution is the highest with 63~83% among the regional units in temperate/warm-temperate forests.

Mathematical explanation on the POD applications for wind pressure fields with or without mean value components

  • Zhang, Jun-Feng;Ge, Yao-Jun;Zhao, Lin;Chen, Huai
    • Wind and Structures
    • /
    • v.23 no.4
    • /
    • pp.367-383
    • /
    • 2016
  • The influence mechanism of mean value components, noted as $P_0$, on POD applications for complete random fields $P_C(t)$ and fluctuating random fields $P_F(t)$ are illustrated mathematically. The critical philosophy of the illustration is introduction of a new matrix, defined as the correlation function matrix of $P_0$, which connect the correlation function matrix of $P_C(t)$ and $P_F(t)$, and their POD results. Then, POD analyses for several different wind pressure fields were presented comparatively as validation. It's inevitable mathematically that the first eigenmode of $P_C(t)$ resembles the distribution of $P_0$ and the first eigenvalue of $P_C(t)$ is close to the energy of $P_0$, due to similarity of the correlation function matrixs of $P_C(t)$ and $P_0$. However, the viewpoint is not rigorous mathematically that the first mode represents the mean pressure and the following modes represent the fluctuating pressure when $P_C(t)$ are employed in POD application. When $P_C(t)$ are employed, POD results of all modes would be distorted by the mean value components, and it's impossible to identify $P_0$ and $P_F(t)$ separately. Consequently, characteristics of the fluctuating component, which is always the primary concern in wind pressure field analysis, can only be precisely identified with $P_0$ excluded in POD.