DOI QR코드

DOI QR Code

Assessment of the Distributional Probability for Evergreen Broad-Leaved Forests(EBLFs) Using a Logistic Regression Model

로지스틱 회귀모형을 이용한 상록활엽수림 생육분포 확률 평가

  • YOO, Byung-Oh (Southern Forest Resources Research Center, National Institute of Forest Science) ;
  • PARK, Joon-Hyung (Southern Forest Resources Research Center, National Institute of Forest Science) ;
  • PARK, Yong-Bae (Southern Forest Resources Research Center, National Institute of Forest Science) ;
  • JUNG, Su-Young (Southern Forest Resources Research Center, National Institute of Forest Science) ;
  • LEE, Kwang-Soo (Southern Forest Resources Research Center, National Institute of Forest Science)
  • 유병오 (국립산림과학원 남부산림자원연구소) ;
  • 박준형 (국립산림과학원 남부산림자원연구소) ;
  • 박용배 (국립산림과학원 남부산림자원연구소) ;
  • 정수영 (국립산림과학원 남부산림자원연구소) ;
  • 이광수 (국립산림과학원 남부산림자원연구소)
  • Received : 2016.02.10
  • Accepted : 2016.03.22
  • Published : 2016.03.31

Abstract

This study was carried out to assess the distributional probability for Evergreen Broad-Leaved Forests(EBLFs) using the field data and digital climate data that were occurred during the period of 1980 to 2010. For the validation of logistic regression model, the probabilistic value ranged from 33 to 84%, especially the probabilistic value of growing distribution becomes lower patterns with higher altitude. In addition, it has been estimated that the probabilistic value of growing distribution is the highest with 63~83% among the regional units in temperate/warm-temperate forests.

본 연구에서는 30년간의 전자기후자료와 현지조사자료를 활용하여 로지스틱 회귀모형을 이용한 상록활엽수림의 생육분포 확률을 평가하였다. 로지스틱 회귀모형에 의한 생육분포 확률은 33~84% 범위를 보이고 있는데 특히, 고도가 높아질수록 생육분포 확률은 낮아지는 패턴을 보이고 있다. 아울러 온 난대림육성권역에서 생육분포 확률이 63~83%로 가장 높은 것으로 추정되었다.

Keywords

References

  1. Chun, J.H., C.B. Lee and S.J. Yun. 2015. Effect of climate change on the geographic distribution of Quercus acuta Thunb. Journal of Agriculture & Life Science 49(6):47-57 (천정화, 이창배, 윤순진. 2015. 붉가시나무의 지리적 분포에 대한 기후변화 영향. 농업생명과학연구 49(6):47-57).
  2. Forest Service. 1999. Development and restoration study of the biotic resources and resort resources in warm temperate forest I. 307pp (산림청. 1999. 난대림 생물.휴양자원 개발 및 복원 실연 연구I. 307쪽).
  3. Forest Service. 2002. Restoration and development for bio technology in warm temperate forest(industry-academygovernment cooperative study IV). 164pp (산림청. 2002. 난대림 생물산업화를 위한 복구개발 (산.학.관 협동 실연 연구IV). 164쪽).
  4. Forest Service. 2005. Progress plan of forest management system. p.32 (산림청. 2005. 산림통합관리시스템 추진방안. 32쪽).
  5. Han, H., A.R. Seol and J.S. Chung. 2008. Development of a logistic regression model for analyzing site characteristics of tombs surrounding expressway in aerial photographs 11(4):192-202 (한희, 설아라, 정주상. 2008. 항공사진에 나타난 고속국도 주변묘지의 입지분석을 위한 로지스틱 회귀모형의 개발. 한국지리정보학회지 11(4):192-202).
  6. Kang, J.T., Y.M. Son, H.J. Kim and H. Park. 2014. Developing optimal site prediction model for evergeen broad leaved trees, Machilus thunbergii in warm temperate zone of the Korean peninsula. Journal of Agriculture & Life Science 48(6):39-54 (강진택, 손영모, 김호정, 박현. 2014. 한반도 난대지역 상록활엽수 후박나무의 적지예측 모델 개발. 농업 생명과학연구 48(6):39-54). https://doi.org/10.14397/jals.2014.48.6.39
  7. Kim, J.H. 1987. Phytosociological study on evergreen broad-leaved forest of Korean Peninsula. Ph.D. Thesis, Univ. of KonKuk, Seoul, Korea. 115pp (김종홍. 1987. 한반도 상록활엽수에 대한 식물사회적 연구. 건국대학교 대학원 박사학위논문. 115쪽).
  8. Koo, K.A. 2000. Distribution of evergreen broad-leaved trees and climatic factors. Master Thesis, Univ. of Kyunghee, Seoul, Korea. 178pp (구경아. 2000. 한반도 상록활엽수의 지리적 분포와 기후요소와의 관계. 경희대학교 대학원 석사학위논문. 178쪽).
  9. Lee, B.D., G.S. Ryu., S.Y. Kim and K.H. Kim. 2012. Development of forest fire occurrence probability model using logistic regression. Journal of Korea Forest Society 101(1):1-6 (이병두, 유계선, 김선영, 김경하. 2012. 로지스틱 회귀 모형을 이용한 산불발생확률모형 개발. 한국임학회지 101(1):1-6).
  10. Lee, B.D. and K.H. Kim. 2013. Development of large fire judgement model using logistic regression equation. Journal of Korea Forest Society 102(3):415-419 (이병두, 김경하. 2013. 로지스틱 회귀식을 이용한 대형산불판정 모형 개발. 한국임학회지 102(3):415-419).
  11. National Institute of Forest Science. 2012. Economic tree species (2) Oak trees. p.210 (국립산림과학원. 2012. 경제수종 (2) 참나무. 210쪽).
  12. National Institute of Forest Science. 2014. Resource evaluation and distribution of Warm forest species in southern Korea, p.23 (국립산림과학원. 2014. 남부지역 주요 난대수종별 자원량 및 분포. 23쪽).
  13. National Institute of Forest Science. 2015. Research trend and policy implication of Japanese evergreen broad-leaved forests. p.12 (국립산림과학원. 2015. 일본 상록활엽수림 연구동향 및 정책적 시사점. 12쪽).
  14. Oliver, M.A and R. Webster. 1990. Kriging: a method of interpolation for geographical information systems. International Journal of Geographical Information Systems 4(3):313-332. https://doi.org/10.1080/02693799008941549
  15. Ryu, G.S., B.D. Lee, M.S. Won and K.H. Kim. 2014. Development of crown fire propagation probability equation using logistic regression model. Journal of the Korean Association of Geographic information Studies 17(1)1-12 (류경선, 이병두, 원명수, 김경하. 2014. 로지스틱 회귀모형을 이용한 수관화확산확률식의 개발. 한국지리정보학회지 17(1):1-12). https://doi.org/10.11108/kagis.2014.17.1.001
  16. Yeon, Y.K. 2011. Evaluation and analysis of Gwangwon-do landslide susceptibility using logistic regression. Journal of the Korean Association of Geographic information Studies 14(4):116-127 (연영광. 2011. 로지스틱 회귀분석 기법을 이용한 강원도 산사태 취약성 평가 및 분석. 한국지리정보학회지 14(4):116-127). https://doi.org/10.11108/kagis.2011.14.4.116
  17. Yim K.B. 1998. The Princiles of Silviculture. Hyangmun Publishing Co., Seoul, 445pp (임경빈. 1998. 조림학원론. 향문사. 445쪽).
  18. Yim, Y.J. 1977. Distribution of forest vegetation and climate in the Korean peninsula. Ph.D. Thesis, Osaka City University, Japan. 126pp.
  19. Yim, Y.J. and T. Kira. 1975. Distribution of forest vegetation and climate in the Korean peninsula. Japanese Journal of Ecology 25:77-78.

Cited by

  1. 거제도 천장산 일대 상록활엽수림의 식물군집구조 특성 vol.33, pp.6, 2016, https://doi.org/10.13047/kjee.2019.33.6.708
  2. 난대상록활엽수종 조림지 활착률과 영향인자 vol.108, pp.4, 2019, https://doi.org/10.14578/jkfs.2019.108.4.513
  3. 고병원성 조류인플루엔자(HPAI) 발생농가 입지특성 vol.23, pp.4, 2020, https://doi.org/10.11108/kagis.2020.23.4.140