• Title/Summary/Keyword: Field homogeneity

Search Result 198, Processing Time 0.023 seconds

Extraction of Moho Undulation of the Korean Peninsula from Gravity Anom-alies (중력이상을 이용한 한반도 모호면 추출에 관한 연구)

  • 김정우;조진동;김원균;민경덕;황재하;이윤수;박찬홍;권재현;황종선
    • Economic and Environmental Geology
    • /
    • v.36 no.3
    • /
    • pp.213-223
    • /
    • 2003
  • We estimated the Moho depth of Korean Peninsula from gravity anomalies and digital elevation model. The satellite radar altimetry-derived global free-air gravity model was used to ensure the homogeneity in both data and frequency domains of the original data. Two different methods were implemented to calculate the Moho depth; the wavenumber correlation analysis (Kim et al., 2000a) and the power spectrum analysis. The former method calculates depth-to-the-Moho by correlating topographic gravity effect with free-air gravity anomaly in the wavenumber domain under the assumption that the study area is not isostatically compensated. The latter one, on the other hand, considers the different density layers (i.e., Conrad and Moho), using complete Bouguer gravity anomaly in the Frequency domain of the Fourier transform. The correlation coefficient of the two Moho model is 0.53, and methodology and numerical error are mainly responsible for any mismatch between the two models. In order to integrate the two independentely-estimated models, we applied least-squares adjustment using the differenced depth. The resultant model has mean and standard deviation Moho depths of 32.0 km and 2.5 km with (min, max) depths of (20.3, 36.6) kms. Although this result does not include any topographic gravity effect, however, the validity of isostasy and the role of local stress field in the study area should be further studied.

Piezocone Factors of Korean Clayey Soils (국내 점성토 지반의 피에조콘 계수)

  • 장인성;이선재;정충기;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.15-24
    • /
    • 2001
  • In order to evaluate undrained shear strength of clayey soils using Piezocone Penetration Test (CPTu), piezoncone factor is utilized. Commonly, piezoncone factors determined by empirical basis were preferred, which were established by correlation between measurements of piezocone test and undrained strengths obtained from other shearing tests. However, previous studies on the empirical piezocone factors were site-specific and there have been no systematic investigations on the effect of both engineering characteristics of clayey soils and soil non-homogeneity on the piezocone factor. Accordingly, the direct application of the previous results to Korean clayey soils without verification may be inappropriate. In this study, empirical piezocone factors are evaluated by comparing 46 CPTu results of 10 test sites with undrained shear strength obtained from Field Vane Test (FVT) and laboratory triaxial tests. Their reliabilities are investigated by the comparison with the previous piezocone factors and the deviation of data distribution from the mean values. And the effects of referencing test methods and typical engineering characteristics of clayey soils such as overconsolidation ratio (OCR) and plastic Index (I$_{p}$) are examined. Because piezocone factors obtained for various soil conditions are widely distributed, it is not appropriate to use the mean value as a representative. Instead, it is recommended to apply the piezocone factors with OCR, which is found to be a major factor in deriving piezocone factor. The necessitated piezocone factors are presented.d.

  • PDF

The Implications of Global Citizenship and Regional Identity in Multicultural Society in the Field of Geographical Education (다문화사회에서 세계시민성과 지역정체성의 지리교육적 함의)

  • Park, Seon-Heui
    • Journal of the Korean association of regional geographers
    • /
    • v.15 no.4
    • /
    • pp.478-493
    • /
    • 2009
  • The purpose of this paper is to discuss the educational implications of global citizenship and regional identity in geographic education of multicultural society. Geographical education inquires into places and region on local, regional, national and global scales. Geography studies geographical representation of ethnical, cultural, political diversities of human societies. Therefore geography is a very proper subject for multicultural education. Geography has also inherent legitimacy on multicultural education in the viewpoints that space or region has valued inherent nature which is constructed by human experience, perception and response etc. Citizenship in multicultural education requests some abilities and attitudes of world citizens superior to state or nation oriented citizenship. However the education of world citizenship doesn't mean abandonment of regional identity in geographical education. Citizenship is based on geographical units which have their territories. Regional identity is the feeling of belonging as a member of a certain region, and is formed not only by race, ethnic, gender, political and social position but also by thought of nature, landscape, national identity, regional dialect, and historical context, etc. The regional identity in multicultural society means the homogeneity which includes the heterogeneity of diverse groups, and has a key which solves the conflicts of diverse groups in the region. Consequently multicultural education in geography would focus on the cultivation of regional identities which are founded on critical thinking to solve the conflicts of multicultural society. The geographic education in multicultural society would rather emphasize on region than on race or nation, and can integrate the global vision of world citizenship with the diverse viewpoint of multicultural education.

  • PDF

Evaluation of Transparent Amorphous $V_2O_5$ Thin Film Prepared by Thermal Evaporation (진공증착법으로 제조한 투명 비정질 $V_2O_5$박막의 특성평가)

  • Hwang, Kyu-Seog;Jeong, Seol-Hee;Jeong, Ju-Hyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.1
    • /
    • pp.27-30
    • /
    • 2008
  • Purpose: This research is that $V_2O_5$ cathode's composition is possible in low temperature. Methods: Transparent in visible spectra range and crystallographically amorphous $V_2O_5$ thin films were prepared by simple vacuum thermal evaporation on soda-lime-silica slide glass substrate. After annealing at 100$^{\circ}C$, 150$^{\circ}C$ and 200$^{\circ}C$ for 10 minutes in air, the surface morphology and the fracture-cross section of the films were investigated by field emission - scanning electron microscope. Transmittance in visible spectra range and surface roughness of the films were analyzed by ultra violet - visible spectrophotometer and scanning probe microscope, respectively. Results: As the increase of annealing temperature from 100$^{\circ}C$ to 150$^{\circ}C$ and 200$^{\circ}C$, transmittance of the $V_2O_5$ films decreased. Optical properties will be fully discussed on the basis of the surface morphological results. Conclusions: Optical transmissivity was superior in case of 100$^{\circ}C$, and could make amorphous $V_2O_5$ thin film that surface quality of thin film did homogeneity.

  • PDF

A study on the Change of Uniaxial Compressive Strength and Young's Modulus According to the Specimen Size of Intact Material (무결함 재료의 크기에 따른 강도와 탄성계수의 변화에 관한 연구)

  • Lee, Seung-Woo;Song, Jae-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.3
    • /
    • pp.205-217
    • /
    • 2006
  • Rock and discontinuities are main factors consisting of a rock mass and the physical properties of each factor have direct effects on the mechanical stability of artificial structures in the rock mass. Because physical properties of the rock and discontinuities change a lot according to the size of test materials, a close attention is needed when the physical properties, obtained from laboratory tests, are used for the design of field structures. In this study, change of physical properties of intact materials due to the change of their size are studied. Six kinds of artificial materials including crystal, instead of an intact rock, are adopted for the study to guarantee the homogeneity of specimen materials even with relatively large size. Uniaxial strength and Young's modulus of each artificial material are checked out for a size effect and compared with the predicted values by Buckingham's theorem - dimensional analysis. A numerical analysis using PFC (Particle Flow Code) is also applied and primary factors influencing on the size effect are investigated.

Characteristics of a-Si:H Multilayer for Contact-type Linear Image Sensor (밀착형 1차원 영상감지소자를 위한 a-Si:H 다층막의 특성)

  • Oh, Sang-Kwang;Kim, Ki-Wan;Choi, Kyu-Man
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.5-12
    • /
    • 1992
  • We have fabricated a-Si:H multilayer for contact-type linear image sensor by means of RF glow discharge decomposition method. The ITO/i-a-Si:H/Al structure has relatively high dark current due to indium diffusion and carrier injection from both electrodes, resulting in low photocurrent to dark current. To suppress the dark current and to enhance interface electric field between ITO and i-a-Si:H film we have fabricated ITO/insulator/i-a-S:H/p-a-S:H/Al multilayer film with blocking structure. The photocurrent of ITO/$SiO_{2}(300{\AA})$/i-a-Si:H/p-a-Si:H($1500{\AA}$)/Al multilayer sensor with 5V bias voltage became saturated at about 20nA under $20{\mu}W/cm^{2}$ light intensity, while the dark current was less than 0.1nA. To increase the light generation efficiency we have adopted ITO/$SiO_{x}N_{y}(300{\AA})$/i-a-Si:H/p-a-Si:H($1500{\AA}$)/Al structure, showing photocurrent of 30nA and dark current of 0.08nA with 5V bias voltage. Also the spectral photosensitivity of the multilayer was enhanced for short wavelength visible region of 560nm, compared with that of the a-Si:H monolayer of 630nm. And its photoresponse time was about 0.3msec with the film homogeneity of 5% deviation.

  • PDF

Improvement of Field Installation Method for Asphalt Concrete Pavement Strain Gauge (아스팔트 콘크리트 포장 변형률계 매설 방법 개선에 관한 연구)

  • Lee, Jae-Hoon;Kim, Ji-Won;Kim, Do-Hyung;Lee, Kwang-Ho
    • International Journal of Highway Engineering
    • /
    • v.5 no.3 s.17
    • /
    • pp.31-42
    • /
    • 2003
  • The KHC Test Road project was initiated on 1991 to develop Korean Pavement Design Guide. It was constructed along the Joongbu Inland Expressway line between Yeoju and Gamgok. It is two-lane wide expressway containing fifteen asphalt and twenty-five Portland cement concrete test pavement sections. Various sensors were installed in the Test Road to evaluate the behavior of test pavement sections under the influence of traffic load and environmental change. The most important issues in the sensor installation are the accurate location and long-term survivability. They are directly influenced by the sensor installation methodology. The methodology for asphalt strain gages is mainly discussed in this paper because it is the second important sensors in the KHC Test Road project. In order to find the best methodology, we evaluated existing methodology from prior experience and several conducted test installations. We have tried mound, block out, and trench cuts since 2000. Among three methods, block out was the most effective one in terms of accurate location, long-term survivability, and material homogeneity. However, this method cannot be applied to the wearing coarse so that the mound method was used as an alternative. The block out method was applied to base and intermediate layers while the mound method was used to the wearing coarse. Three hundred seventy-four asphalt strain gauges were installed on asphalt pavement sections from September 3rd to November 18th in 2002. According to the sensor measurement evaluation, 6.3% of sensor demonstrated over ranged readings for mound method installation and 2.5% did for block out method installation. We lost only two sensors during the installation. It is 99.5% survival and it is excellent survival rate according to other experience.

  • PDF

Development of Detachable IORT Table for Colorectal Cancer (장착-탈거 및 경사각 조절이 가능한 대장직장암의 수술 중 방사선 치료대의 개발)

  • Kim, Myung-Se;Lee, Joon-Ha
    • Radiation Oncology Journal
    • /
    • v.12 no.1
    • /
    • pp.117-121
    • /
    • 1994
  • In spite of remarkable improvement of surgical skills and anesthesia, local failure still occurred in 36-45$ \% $ of locally advanced colorectal cancer after curative resection with or without pre-or post-operative irradiation. Intraoperative radiation therapy(IORT) is the ideal modality which resectable lesions are removed surgically 3nd the remaining cancer nests are sterilized by irradiation during a surgical procedure. Therefore, the excellent local control without the damage of the adjacent normal tissues can be achieved. In IORT, judicious set up of the treatment cone on the treatment surface of the patient is required for accurate and homogenous dose distribution within treatment field, especially on the slopping surface of sacrum and pelvic sidewall which are the common sites of the local recurrence in rectal cancer. For this purpose, adequate co-ordination of gantry rotation and table tilting are essential. Adjusting gantry rotation is not difficult but tilting of the table is impossible inconventional treatment couch. Department of Therapeutic Radiology in Yeungnam University Medical Center developed the IORT table for colorectal cancer which is easy to set up and detach on the Linac treatment couch within 5 minutes. The range of tilting with head-up and head-down is about 30 degree which is efficient and easy-to-use, not only for IORT but also for colorectal surgery. So far, authors performed IORT with newly developed treatment table in 2 patients with rectal cancer and we found that this newly developed table could contribute in improving the dose distribution of IORT and surgical procedure for colorectal cancer.

  • PDF

Dose Distributions for Ll NAC Radiosurgery with Dynamically Shaping Fields (선형가속기를 이용한 방사선 수술시 Dynamical Field Shaping에 의한 선량분포)

  • Suh Tae Suk;Yoon Sei Chul;Kim Moon Chan;Jang Hong Seok;PArk Yong Whee;Shinn Kyung Sub;Park Charn Il;Ha Sung Whan;Kang Wee Saing
    • Radiation Oncology Journal
    • /
    • v.11 no.2
    • /
    • pp.431-437
    • /
    • 1993
  • An important problem in radiosurgery is the utilization of the proper beam parameters, to which dose shape is sensitive. Streotactic radiosurgery techniques for a linear accelerator typically, use circular radiation fields with multiple arcs to produce an spherical radiation distribution. Target volumes are irregular in shape for a certain case, and spherical distributions can irradiate normal tissues to high dose as well as the target region. The current improvement to dose distribution utilizes treating multiple isocenters or weighting various arcs to change treatment volume shape. in this paper another promising study relies upon dynamically shaping the treatment beam to fit the beam's eye view of the target. This conformal irradiation technique was evaluated by means of visual three dimensional dose distribution, dose volume histograms to the target volume and surrounding normal brain. It is shown that using even less arcs than multiple isocenter irradiation technique, the conformal therapy yields comparable dose gradients and superior homogeneity of dose within the target volume.

  • PDF

Evaluation on the Mechanical Properties of Strain Hardening Cement Composite by Mixing Method for Application at Building Construction Site (건축시공 현장적용을 위한 비빔방법에 따른 SHCC의 역학적 성능 평가)

  • Jeon, Young-Seok;Kim, Gyu-Yong;Nam, Jeong-Soo;Kim, Young-Deok;Jeong, Jae-Hong;Lee, Seung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.6
    • /
    • pp.530-537
    • /
    • 2011
  • The purpose of this study is to examine material performance of fiber reinforced cement composite for mass production. It is necessary to manufacture SHCC(Strain Hardening Cement Composite) by batch plant for field application and mass production. For the study, a mock-up test of SHCC manufactured in the batch plant was conducted, and the performance was compared with SHCC manufactured in the laboratory. Assessment items were freshness and hardening properties. Specifically, direct tensile test machine was used for performance verification of SHCC. As a result, there was a tendency of less satisfactory fiber dispersion and performance of strain hardening compared with the performance of SHCC manufactured in the laboratory. To address this, dry mixing and mortar mixing time should be increased compared to laboratory mixing, and injection time of an agent such as a water reducing agent should be properly controlled according to mixing combination, or the capacity to secure dispersion and homogeneity of material.