• Title/Summary/Keyword: Field compaction test

Search Result 168, Processing Time 0.024 seconds

A study on A Optimum Dimension of A Taper Granular Compaction Pile by means of Numerical Analysis (수치해석을 통한 변단면쇄석다짐말뚝의 최적 제원에 관한 사례연구)

  • Kim, Chae-Min;Go, Young-Hyoun;Yea, Geu-Guwen;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.113-121
    • /
    • 2010
  • Granular Compaction Pile are commonly used to improve bearing capacity and reduce settlements of soft soil in coastal and lowland areas. In this paper, through the field load test results of straight granular compaction piles and taper granular compaction piles, material properties of ground and GCP for numerical analysis were drawn and numerical model was established. In the numerical analysis of taper granular compaction piles with 3 different sections, a optimum dimension of taper granular compaction pile was considered at the side of settlement.

  • PDF

Investigation on the Field Compaction for Embankment of Fill Dam (휠댐성토의 현장다짐에 관한 연구)

  • 최진규;김문기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.25 no.4
    • /
    • pp.69-79
    • /
    • 1983
  • The objective of this study is to analyze the present situation of compaction equipment used in the earth fill dam construction, and the compaction effects of varions types of equipment on core and pervious zones of the fill dam. The results obtained are summarized as follows; 1. Banking materials mostly used for the core zone were soils classified as CL, SC and ML, while those classified as SM, ML and SC were predominant for the pervious zone. 2. Equipments used practically in the real fields were considerably different from those specified in the designs. 3. It was found that the relationship between optimum water content and maximum dry density for both core and pervious materials showed to be linear, ranging from 10% to 25% water content. That is, ${\gamma}$dmax (core) = 2.2555-0.0284 Wopt ${\gamma}$dmax(pervious) =2.239-0.028 Wopt 4. The generalized compaction guides for all kinds of equipment and soil types consi- dered in this study may be recommended as N=8-10 T=2Ocm, N=10-12 T=3Ocm for core zone(98%) and N=6-8 T=2Ocm, N=8-10 T=3Ocm for pervious zone (95%). 5. The coefficient of permeability in the field tests showed abont 10 times as high as the laboratory test value. This large deviation, however, was due to the horizontal permeation and considered not to be significant in the light of the satisfactory compaction ratio in the field compac- tion.

  • PDF

Investigation on the Repeatability of Modified Proctor Test for Roller Compacted Concrete Pavement (롤러 전압 콘크리트 포장을 위한 수정다짐시험의 반복재현성 고찰)

  • Hwang, Seok Hee;Rith, Makara;Hong, Seong Jae;Lee, Seung Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.931-940
    • /
    • 2015
  • Roller Compacted Concrete Pavement (RCCP), is a type of pavement using compaction roller and asphalt finisher on concrete mixture that contains low amount of water. RCCP strength and durability are greatly affected by compaction level. Quality control is performed by ensuring the degree of compaction at site based on dry density. In the field, Modified Proctor Test is used in order to obtain optimum dry density. However, there is no clear compaction curve analysis criteria of Modified Proctor Test for RCCP. In this study, compaction curve built by three samples of Modified Proctor Test was produced and it was used to compare with compaction curve contented lower number of samples (one and two samples) in order to analyze their reliability. Thus, a conclusion was drawn from the results; by comparing to the result from Modified Proctor Test of three samples, the use of two samples represented result with only 0.5% of error which means the reliability is 99.5%.

Physical and Mechanical Characteristics of Subgrade Soil using Nondestructive and Penetration Tests (비파괴시험과 관입시험에 의한 노상토의 물리·역학적 특성)

  • Kim, Kyu-Sun;Kim, Dong-Hee;Fratta, Dante;Lee, Woojin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1C
    • /
    • pp.19-27
    • /
    • 2011
  • This paper evaluates the applicability of wave-based nondestructive methodologies and a penetration test for compaction quality measurements during road construction. To evaluate the physical and mechanical properties of compacted subgrade soil layers, soil stiffness gauge (SSG), time domain reflectometry (TDR), and miniature electro-mechanical systems (MEMS) accelerometers were used to nondestructively evaluate the soil response during and after compaction and dynamic cone penetrometer (DCP) profiles were used to evaluate the soil shear strength after compaction was completed. At the field site, two types of soils were compacted with four different compaction equipments and energies. Field testing results indicate that soil parameters evaluated by different testing methods, which are SSG, TDR, MEMS accelerometer, and DCP, are highly correlated. In addition, it is shown that the physical and mechanical tests deployed in this study can be used as alternative methods to the conventional compaction quality evaluation methods when assessing the overall quality and the engineering response of compacted lifts.

Evaluation of Degree of Compaction of Railroad Trackbed Fills Using Elastic Wave Velocities (탄성파 속도를 이용한 철도 토공노반의 다짐도 평가)

  • Kim, Hak-Sung;Jung, Young-Hoon;Gang, Dong-Yeob;Lee, Seong-Hyeok
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1650-1658
    • /
    • 2011
  • The quality control of compaction fills has been commonly performed via the field density measurement and plate load tests. However, the engineer frequently encounters difficulties in actually controling the quality due to the uncertainty in the field density measurement as well as the plate load tests. To overcome these difficulties, Park et al. (2009) proposed an alternative quality control method based on the measurement of the compressive wave velocities. In this study, the compressive wave velocities measured in the full-scale model test site were analyzed. Direct arrive seismic tests were performed after the completion of each trackbed layer. To identify a relationship between elastic wave velocities and degree of compaction, laboratory compaction tests were conducted.

  • PDF

Fundamental Study on Earthwork Quality Control Based on Intelligent Compaction Technology (지능형 다짐기술을 통한 토공사 품질관리를 위한 기초 연구)

  • Baek, Sung-Ha;Kim, Jin-Young;Cho, Jin-Woo;Kim, Namgyu;Jeong, Yeong-Hoon;Choi, Changho
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.45-56
    • /
    • 2020
  • In this paper, intelligent compaction (IC) technology and the earthwork quality control specifications based on IC were analyzed, and the field study was conducted to investigate the relationship between the representative IC value CMV (Compaction Meter Value) and spot test results (plate bearing test and field density test). As the number of roller passes increased, both the CMV and spot test results increased. However, point-by-point comparison between CMV and spot test results yielded poor quality correlations; this is because the ununiform stiffness of the underlying layer and the moisture content of the lift layer affected the CMV and spot test results, respectively. Most international specifications related to IC requires knowledge of the IC values and their relationships with the soil properties obtained by the traditional spot tests. Therefore, for the successful implementation of intelligent compaction technology into earthwork construction practice, the number of roller passes as well as the lift thickness and the moisture content of the soil should be carefully considered.

Utilization of LFWD for Compaction Management of Embankment in Expressway Construction (고속도로 건설 시 성토부 다짐관리를 위한 LFWD의 활용성)

  • Park, Yangheum;Jang, Ilyoung;Do, Jongnam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.3
    • /
    • pp.45-51
    • /
    • 2021
  • The evaluation of the degree of compaction of the embankment area, which accounts for most of highway earthworks, is generally performed by a flat plate loading test. The plate loading test is a traditional test method and has high reliability in the field. However, as reaction force equipment must be carried out and it takes about 40 minutes per site during the test, there may be limitations in managing the entire expanse of earthworks. Meanwhile, in order to overcome this, the Ministry of Land, Infrastructure and Transport proposed a simple method of evaluating the level of compactness in the provisional guidelines for compaction management of the packaging infrastructure in 2010. However, it has not been utilized at the highway construction site until now, 10 years later. Therefore, this study attempted to verify the utility of the compaction evaluation method using LFWD (Light Falling Weight Deflectometer) of the impact loading method among the test methods suggested in the provisional guideline. To this end, the correlation was derived by conducting a plate loading test and an LFWD test for each site property and compaction degree. As a result of the test, there was no consistency of test data in the ground with a relative compaction of 80% or less. However, it was confirmed that the correlation has a tendency to increase beyond that. If the test method or test equipment is improved to ensure the consistency of the test values of the impact loading method in the future, it will play a big role in solving the blind spot for compaction management in the earthworks.

Evaluation of Rutting Performance of Hot Mix Asphalt with Compaction Curve of Gyratory Compactor (선회다짐기 다짐곡선을 이용한 아스팔트 혼합물의 소성변형 특성 평가)

  • Park, Tae-Seong;Lee, Byung-Sik;Hyun, Seong-Cheol;Lee, Kwan-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.3
    • /
    • pp.59-67
    • /
    • 2007
  • For the time being, HMA test specimen were prepared by Marshall Compaction Method for hot mix asphalt design and evaluated the mechanical properties of HMA at the specified air voids. Gyratory Compaction can simulate the field compaction process and measure the degree of compaction just after field compaction in laboratory. Superpave mix design with Gyratory compactor has been used for characterization of performance. The curve of gyratory compaction can be used to evaluate the permanent deformation potential of hot mix asphalt. In this paper, couple of indices for hot mix asphalt have been showed for hot mix asphalt in Korea. The major properties from gyratory compaction curve are compaction energy index and traffic compaction index. The specific guide line for the potential of hot mix asphalt has been proposed.

A Study on the Mechanical Compaction of Fill Dam (Fill Dam의 기계 전압효과에 관한 연구)

  • 윤충섭;김주범
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.3
    • /
    • pp.92-103
    • /
    • 1979
  • The compaction of core zone of the fill dam is very important foe increasing of the Strength of soil mass and reduction of permeability of the core. The principal objects of this study are to give the construction criteria of tamping rollers and to find out the relationships between density and permeability of soil after compaction. The results in this study are summarized as follows. 1. The core zone of fill dam should be compacted more than 8 passed because the compaction effects of clayey soil increase sharply in about 8 passes of roller. 2. The coefficient of permeability (K) increases with the thickness of compaction of soil even though the density is same. 3. The effect of compaction increases with the quantity of coarse materials such as coarse sand and gravel. 4. If D values change from 100 percent to 98 percent and from 100 percent to 95 percent, K values become 2 times and 5 times of initial K value respectively. 5. The coefficient of permeability in the field soil is very high comparing with the result of laboratory test at the same 100 percent compaction ratio, but differences between both results decrease with the decrease of compaction ratio. 6. Thickness of soil layer for the compaction should be increased for heavier compaction machine. 7. In order to get the compaction ratio of 98 percent or more, 10 to 12 passes of roller is generally required with the thickness of soil from 20cm to 30cm.

  • PDF

Fundamental Study for Compaction Methods by Mechanical Tests (역학적 시험에 의한 다짐방법의 적합성 평가를 위한 기초연구)

  • Seo, Joo-Won;Choi, Jun-Seong;Kim, Jong-Min;Roh, Han-Seong;Kim, Soo-Il
    • International Journal of Highway Engineering
    • /
    • v.5 no.4 s.18
    • /
    • pp.23-35
    • /
    • 2003
  • In this study, compaction evaluating program based on ASTM critria is developed bu analyzing the results of laboratory tests. And the laboratory tests such as compaction test, triaxial test and resonance column test of subgrade soils are performed to develop compaction management methodology at seven test sites. Especially, to figure out chararteristic with changing compactive efforts, the test was carried out at five levels of compactive efforts at each soil sample. Database was set up from the test results. With the methodology using mechanical property - the elastic modulus, the gap between road design and management and road construction management is narrowed. The regression equation of G/$G_{max}$ is proposed at each strain level of subgrade soils according to AASHTO criteria, and the relationship between fundamental properties of soil mass and degree of compaction is derived as well. The development of compaction management and field compaction management method is proposed by the elastic modulus based on mechanical tests.

  • PDF