• Title/Summary/Keyword: Field Equation

Search Result 2,565, Processing Time 0.027 seconds

Magnetic Field Calculation of Toroidal Winding with Circular Section (단면이 원형인 토로이드 권선의 자속밀도 계산)

  • Lee, Sang-Jin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.1
    • /
    • pp.28-31
    • /
    • 2010
  • A magnetic field calculation method for toroidal type winding which has circular section was developed. At first, the equation for magnetic field by single filament coil was extended using numerical integration to estimate the entire interesting region of solenoid, especially winding region itself. And then, the magnetic field by toroidal arrangement of solenoids was computed with a coordinate transformation of vector fields. The superconducting magnet with toroidal arrangement can be made up of several tens of solenoid type double pancake windings for some applications such as superconducting magnetic energy storage system(SMES). In this system, the field calculation on the high-Tc superconducting(HTS) tape itself is very important because the entire system can be reached to a fault by magnetic stress of conductor or the critical current of superconducting tape can be dramatically reduced under its self field condition. To make matters worse, 3-dimensional analysis is indispensable for this type of magnet and the most of commercial programs with finite element method can be taken too much time for analysis and design. In this paper, a magnetic field calculation method for toroidal type winding with circular section was induced.

A Study on Torque and Speed Control of Three Phase Induction Motor (3상(相) 유도전동기(誘導電動機)의 토크 및 속도제어(速度制御)에 관한 연구(硏究))

  • Choi, K.H.;Jeong, S.K.;Yang, J.H.
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.7 no.1
    • /
    • pp.111-126
    • /
    • 1995
  • In general, the electromagnetic transient phenomenon always exists in induction motor(IM) with the torque change. The control performance of IM is very worse than that of D.C motor owing to this transient phenomenon. So many studies about the elimination methods of the transient phenomenon have been making progress. Interesting methods of them are the Field acceleration method(FAM) and the method of impulse addition on the input voltage at the time point of torque change. In this paper, first, the circuit equation of IM is derived from the phase segregation method. The torque equation consisted of the stator and rotor currents is derived from the solving of the circuit equation. As we well known, the transient terms exist in this the torque equation. The method of impulse addition on the input voltage at the instance of torque change is confirmed theoretically for the elimination of the transient phenomenon. With the base on it, the author proposed a real time algorithm to eliminate the transient terms. The control system is consisted of the PI controller with the feedforward of torque change. The author could confirm that the quick stepwise responses of torque and speed can be obtained from response simulations.

  • PDF

Direct Runoff Simulation using CN Regression Equation for Bocheong Stream (유출곡선지수 회귀식을 이용한 보청천유역의 직접유출 모의연구)

  • Kwak, Jae Won;Kim, Soo Jun;Yin, Shan hua;Kim, Hung Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.590-597
    • /
    • 2010
  • NRCS Curve Number (CN) method is widely used for practical purposes in the field by engineers and researchers to calculate direct runoff from total rainfall. However, CN is obtained from antecedent moisture condition and soil characteristics and so it has some problems due to its uncertainty. Therefore this study estimated CN of a watershed using asymptotic CN method which can estimate CN by rainfall and runoff data and compared the result with representative CN given by WAMIS. And we performed runoff simulation for rainy season of Bocheong stream by CN regression equation. From the result, we showed that it could be more reasonable to simulate direct runoff using watershed CN regression equation than WAMIS CN. Furthermore, we knew that the equation is more sensitive to small rainfall event.

A Numerical Study on the Similarity of the Developing Laminar Flows between in Orthogonally Rotating Square Duct and Stationary Curved Square Duct (수직축을 중심으로 회전하는 직관과 정지한 곡관 내부의 발달하는 층류 유동의 유사성에 관한 수치적 연구)

  • Lee G. H.;Baek J. H.
    • Journal of computational fluids engineering
    • /
    • v.6 no.1
    • /
    • pp.21-30
    • /
    • 2001
  • A numerical study on the similarity of the developing laminar flows between in a straight duct rotating about an axis perpendicular to that of the duct and in a stationary curved duct was carried out. In order to clarify the analogy of two flows, dimensionless parameters K/sub LR/ = Re/(equation omitted) and Rossby number, Ro, in a rotating straight duct were used as a set corresponding to Dean number K/sub LC/ = Re/(equation omitted), and curvature ratio, λ, in a stationary curved duct. For the large values of Ro and λ, it is shown that the flow field satisfies the 'asymptotic invariance property', that is, there are strong quantitative similarities between the two flows such as flow patterns, friction factors, and maximum axial velocity magnitudes for the same values of K/sub LR/ and K/sub LC/ if they are correlated with dimensionless axial distances Z/sub R/ = z/(equation omitted) for a rotating duct flow and Z/sub C/ = z/(equation omitted) for a stationary curved duct flow.

  • PDF

The Analysis of Arbitrarily Shaped Microstrip Patch Antennas using the MPIE (MPIE를 이용한 임의의 형상을 갖는 마이크로스트립 패치 안테나의 해석)

  • 정대호;김태원;김정기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.8
    • /
    • pp.1059-1068
    • /
    • 1993
  • We will put the emphasis on the analysis of arbitrarily shaped microstrip antennas. The most general and rigorous treatment of microstrip antennas is given by the electric field integral equation(EFIE), usally formulated in the spectral domain. In this paper, we use a modification of EFIE, called the mixed potential integral equation(MPIE) , and we solve it in the space domain. This technique uses Green's functions associated with the scalar and vector potential which are calculated by using stratified media theory and are expressed as Sommerfeld integrals. The integral equation is solved by a moment's method using rooftop subsectional basis function. Thus, microstrip patches of any shape can be analysed at any frequency and for any substrate. Numerical results for a rectangular patch and for a L-shaped patch are given and compared with measured values.

  • PDF

Electromechanical Characteristics of a Squirrel Cage Induction Motor due to Broken Rotor Bars and Rotor Eccentricity (회전자 바 개방과 회전자 편심에 의한 단삼 유도 전동기의 전기 및 기계적 특성 해석)

  • Park, Sang-Jin;Jang, Jeong-Hwan;Jang, Geon-Hui;Lee, Yong-Bok;Kim, Chang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.8
    • /
    • pp.425-433
    • /
    • 2002
  • This research investigates the electromechanical characteristics of a sing1e-phase squirrel cage induction motor due to broken rotor bars and rotor eccentricity. Numerical analysis is performed by solving the nonlinear time-stepping finite element equation coupled with the magnetic field equation, circuit equation and mechanical equation of motion. It shows that the asymmetry of magnetic flux due to the broken rotor bars and rotor eccentricity introduce a change in the stator current, torque, speed, magnetic force and vibration of a rotor at the same time. However, even in the existence of rotor eccentricity, 3 broken rotor bar introduces a dominant change in the magnetic force and rotor displacement, i.e., beating phenomenon in time domain and sideband frequencies in frequency spectra, respectively.

Modified Pseudosteady-State Approach to Calculate Long-Time Performance of Closed Gas Reservoirs (수정된 유사정상상태 해법을 이용한 폐쇄 가스저류층의 장기 거동 해석)

  • Lee Kun Sang
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.73-78
    • /
    • 1998
  • This paper considers the applicability of a pseudosteady-state approach to the long-time behavior of real gas flow in a closed reservoir. The method involves a combination of a linearized gas diffusivity equation using a normalized pseudotime and a material balance equation. For the simulation of field-scale problems with multiple wells of differing production rates over extended production periods, the pseudosteady-state equation was solved successively for each flow period. Results from this study show that the approach provides a fast and accurate method for modeling the long-time behavior of gas reservoirs under depletion conditions.

  • PDF

Apparent Contact Angle on the Hydrophilic/Hydrophobic Surfaces with Micro-pillars (마이크로 기둥 구조가 있는 친수성/소수성 표면에서의 겉보기 접촉 각에 대한 연구)

  • Yu, Dong In;Doh, Seung Woo;Kwak, Ho Jae;Ahn, Ho Seon;Kim, Moo Hwan;Park, Hyun Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.2
    • /
    • pp.171-178
    • /
    • 2014
  • In this study, the apparent contact angle on the hydrophilic/hydrophobic surfaces with micropillars was studied. The previous researches showed that the Wenzel equation and the Cassie-Baxter equation were thermodynamically derived for the rough hydrophilic/hydrophobic surfaces and generally referenced on the field of wetting phenomena. For the verification of both equations, the apparent contact angle on the hydrophilic/hydrophobic surfaces with micro-pillars was measured. In the comparison between the measured and estimated apparent contact angles with the equations, the differences between the apparent contact angles were analyzed. Conclusively, the available range and limitation of theoretical equations were investigated and further researches about the apparent contact angle on the rough surfaces were proposed.

Estimation of Roughness Coefficient Using a Representative Grain Diameter for Han Stream in Jeju Island (한천의 대표입경을 이용한 조도계수 산정)

  • Lee, Jun-Ho;Yang, Sung-Kee;Kim, Dong-Su
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.563-570
    • /
    • 2013
  • Roughness coefficient was computed for review of applicability based on measurement of the representative grain diameter reflecting channel characteristics of Han Stream. After field survey, collection of bed material, and grain analysis on the collected bed material, roughness coefficient was computed using representative grain and existing empirical equation for roughness coefficient. Value of roughness coefficient calculated using equation by Meyer-Peter and Muller (1948) was 0.0417 for upstream, 0.0432 for midstream, and 0.0493 for downstream. As a result of comparing the computed roughness coefficient to other empirical equations for review of applicability, the coefficient was larger in Strickler (1923) equation by 0.006. Smaller coefficient was shown by Planning Report for River Improvement Works. Equation by Garde and Raju (1978) was larger by 0.004, and equations by Lane and Carlson (1953) and by Meyer-Peter and Muller (1948) were larger by 0.001. Such precise roughness coefficient is extremely important when computing the amount of flood in rivers to prevent destruction of downstream embankments and property damages from flooding. Since roughness coefficient is a factor determined by complicated elements and differs according to time and space, continued management of roughness coefficient in rivers and streams is deemed necessary.

Study on the Electron Transport Coefficient in Mixtures of $CF_4$ and Ar ($CF_4-Ar$ 혼합기체의 전자수송계수에 관한 연구)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • Study on the electron transport coefficient in mixtures of CF4 and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The calculations of electron swarm parameters require the knowledge of several collision cross-sections of electron beam. Thus, published momentum transfer, ionization, vibration, attachment, electronic excitation, and dissociation cross-sections of electrons for $CF_4$ and Ar, were used. The differences of the transport coefficients of electrons in $CF_4$ mixtures of Ar, have been explained by the deduced energy distribution functions for electrons and the complete collision cross-sections for electrons. The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4-Ar$ mixtures shows the Maxwellian distribution for energy. That is, $f({\varepsilon})$ has the symmetrical shape whose axis of symmetry is a most probably energy. The proposed theoretical simulation techniques in this work will be useful to predict the fundamental process of charged particles and the breakdown properties of gas mixtures. A two-term approximation of the Boltzmann equation analysis and Monte Carlo simulation have been used to study electron transport coefficients.