• Title/Summary/Keyword: Fibroblast growth factor 2

Search Result 199, Processing Time 0.032 seconds

The Effect of Basic Fibroblast Growth Factor in Acellular Human Dermal Grafts in Rats (흰쥐에 시행한 무세포 인체 진피 이식에서의 Basic Fibroblast Growth Factor의 효과)

  • Lee, Hun-Joo;Kim, Yang-Woo;Cheon, Young-Woo
    • Archives of Plastic Surgery
    • /
    • v.38 no.5
    • /
    • pp.567-575
    • /
    • 2011
  • Purpose: Acellular human dermis is very useful implant for use in plastic and reconstructive surgery. However, the volume of acellular human dermis graft is known to decrease for a long time. Basic fibroblast growth factor (bFGF) is a polypeptide that enhances the collagen synthesis and angiogenesis. In the current study we examined whether bFGF could improve the survival of acellular human dermis ($SureDerm^{(R)}$) by increasing angiogenesis of the graft. Methods: Forty rats were divided into two groups (control and bFGF). A 2-mm thick piece of $SureDerm^{(R)}$ was cut into smaller pieces that were $15{\times}5$ mm in size. Two subcutaneous pockets were made on the back of each rat. Grafts sprayed with bFGF were implanted in the bFGF group and injected with bFGF after transplantation every 3 days for 2 weeks. In the control group, the grafts were treated with phosphate-buffered saline (PBS) instead of bFGF. Four days, and 1, 4, and 12 weeks after the implantation, the grafts were harvested and gross and histologic examinations were performed. Inflammation grade, graft thickness, neocollagen density, and neocapillary count were measured. Results: The bFGF group displayed more rapid accumulation of inflammatory cells with a higher density of neocapillaries, and increased active collagen synthesis. After 12 weeks, the thickness of the grafts in the control and bFGF groups was $75.15{\pm}4.80%$ and $81.79{\pm}5.72%$, respectively, in comparison to the thickness before transplantation. There was a statistically significant difference between both groups ($p$ <0.05). Conclusion: bFGF was effective in reducing the absorption of acellular human dermal grafts by increasing angiogenesis and accelerating engraftment. In conclusion, bFGF may be a good tool for use in acellular human dermal graft transplantation for reconstructive surgery involving soft-tissue defects.

Anti-angiogenic activity of conjugated linoleic acid on the basic fibroblast growth factor-induced angiogenesis

  • Moon, Eun-Joung;Lee, You-Mie;Kim, Kyu-Won
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.337.2-337.2
    • /
    • 2002
  • Conjugated linoleic acid (CLA) is a potent inhibitor of mammary carcinogenesis. Cancer cells produce various angiogenic factors which stimulate host vascular endothelial cell mitogenesis and chemotaxis for their growth and metastasis. Basic fibroblast growth factor (bFGF) is a potent angiogenic factor that is expressed in many tumors. In this study. we found that CLA decreased bFGF-induced endothelial cell proliferation and DNA synthesis in a dose-dependent manner. However, CLA did not inhibit endothelial cell migration. Furthermore CLA showed a potent inhibitory effect on embryonic vasculogenesis and bF GF-induced angiogenesis in vivo. Collectively. these results suggest that CLA selectively inhibis the active proliferating endothelial edll induced by bFGF. which may explain its anti-carcinogenix properties in vivo.

  • PDF

The Effect of Ulmus Root-bark Dressing in Fibroblast Growth Factor and Vascular Endothelial Growth Factor of Induced Pressure Ulcer in Rats (느릅나무 근피드레싱이 쥐에 유발된 욕창의 섬유아세포성장인자와 혈관내피성장인자에 미치는 효과)

  • Na, Yeon Kyung
    • Journal of Korean Biological Nursing Science
    • /
    • v.15 no.4
    • /
    • pp.257-263
    • /
    • 2013
  • Purpose: The purpose of this study was to investigate the effect of Ulmus root-bark dressing in fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) of induced pressure ulcers in rats. Methods: 54 male Sprague-Dawley rats were used and randomly divided into 2 groups. The rats were anesthetized and pressure ulcers were induced at 140 mmHg for three hours, using a personally-designed pressing apparatus. Ulmus dressing was applied in the experimental group (n=27) and saline gauze dressing in the control group (n=27). Each of the dressings was changed every other day, and after a month, the wounds were examined by microscopy biweekly for 20 weeks. Results: After 4 weeks, the epidermis of the wounds was recovered, but inflammatory infiltration of the dermis was remained. After 6 weeks, inflammatory cells were diminished and the number of capillaries was decreased. Examined by immunofluorescence staining, the FGF positive cells in the experimental group changed negatively after 18 weeks, but the control group still existed even after 20 weeks. VEGF positive cells in the experimental group also changed negatively after 20 weeks, but the control group still existed. Conclusion: The findings of this study demonstrate that Ulmus dressing is effective in minimizing scar formation and inflammatory reaction by decreasing FGF and VEGF in the terminal phase of wound healing.

Effect of Fibroblast Growth Factor-2 on the Sprouting in Vascular Endothelial Cells (혈관내피세포의 발아에 미치는 fibroblast growth factor-2의 효과)

  • 김환규
    • Journal of Life Science
    • /
    • v.14 no.2
    • /
    • pp.263-268
    • /
    • 2004
  • The sprouting of vascular endothelial cells is an initial step in angiogenesis. Matrix metalloproteinases can associate with integrin on the surface of endothelial cells, thereby promoting angiogenesis. The purpose of this study was to test if fibroblast growth factor-2 (FGF-2) can regulate the sprouting in porcine pulmonary artery endothelial cells. FGF-2 induced sprouting and secretion of MMP-2 and plasmin. FGF-2 also induced the expression of integrin Mac-1, which is inhibited IS20I. Addition of BB-94, a 2-antiplasmin and IS20I inhibited FGF-2-induced sprouting activity. Therefore, FGF-2-induced sprouting activity in PPAECs may be accomplished by secretion of proteinases such as MMP-2 and plasmin and integrin expression.

A case of Pfeiffer syndrome with c833_834GC>TG (Cys278Leu) mutation in the $FGFR2$ gene

  • Lee, Min-Young;Jeon, Ga-Won;Jung, Ji-Mi;Sin, Jong-Beom
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.7
    • /
    • pp.774-777
    • /
    • 2010
  • Pfeiffer syndrome is a rare autosomal dominant disorder characterized by coronal craniosynostosis, brachycephaly, mid-facial hypoplasia, and broad and deviated thumbs and great toes. Pfeiffer syndrome occurs in approximately 1:100,000 live births. Clinical manifestations and molecular genetic testing are important to confirm the diagnosis. Mutations of the fibroblast growth factor receptor 1 ($FGFR1$) gene or $FGFR2$ gene can cause Pfeiffer syndrome. Here, we describe a case of Pfeiffer syndrome with a novel c833_834GC>TG mutation (encoding Cys278Leu) in the $FGFR2$ gene associated with a coccygeal anomaly, which is rare in Pfeiffer syndrome.

Enhancing Dermal Matrix Regeneration and Biomechanical Properties of $2^{nd}$ Degree-Burn Wounds by EGF-Impregnated Collagen Sponge Dressing

  • Cho Lee Ae-Ri
    • Archives of Pharmacal Research
    • /
    • v.28 no.11
    • /
    • pp.1311-1316
    • /
    • 2005
  • To better define the relationship between dermal regeneration and wound contraction and scar formation, the effects of epidermal growth factor (EGF) loaded in collagen sponge matrix on the fibroblast cell proliferation rate and the dermal mechanical strength were investigated. Collagen sponges with acid-soluble fraction of pig skin were prepared and incorporated with EGF at 0, 4, and 8 $\mu$g/1.7 $cm^{2}$. Dermal fibroblasts were cultured to 80$\%$ confluence using DMEM, treated with the samples submerged, and the cell viability was estimated using MTT assay. A deep, $2^{nd}$ degree- burn of diameter 1 cm was prepared on the rabbit ear and the tested dressings were applied twice during the 15-day, post burn period. The processes of re-epithelialization and dermal regeneration were investigated until the complete wound closure day and histological analysis was performed with H-E staining. EGF increased the fibroblast cell proliferation rate. The histology showed well developed, weave-like collagen bundles and fibroblasts in EGF-treated wounds while open wounds showed irregular collagen bundles and impaired fibroblast growth. The breaking strength (944.1 $\pm$ 35.6 vs. 411.5 $\pm$ 57.0 Fmax, $gmm^{-2}$) and skin resilience (11.3 $\pm$ 1.4 vs. 6.5 $\pm$ 0.6 mJ/$mm^{2}$) were significantly increased with EGF­treated wounds as compared with open wounds, suggesting that EGF enhanced the dermal matrix formation and improved the wound mechanical strength. In conclusion, EGF-improved dermal matrix formation is related with a lower wound contraction rate. The impaired dermal regeneration observed in the open wounds could contribute to the formation of wound contraction and scar tissue development. An extraneous supply of EGF in the collagen dressing on deep, $2^{nd}$ degree-burns enhanced the dermal matrix formation.

THE EFFECTS OF FIBRONECTIN & GROWTH FACTOR ALONE OR COMBINED APPLICATION ON THE ACTIVITY OF GHUMAN GINGIVAL FIBROBLASTS AND PERIODONTAL LIGAMENT CELLS (Fibronectin과 성장인자의 단독 혹은 복합투여가 배양 인체 치은섬유모세포 및 치은인대세포의 활성에 미치는 효과)

  • Kim, Eung-Tae;Han, Du-Seok;Yoo, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.2
    • /
    • pp.239-251
    • /
    • 1995
  • The selective migration, attachment and proliferation of periodontal ligament cells are the desired goal of periodontal regeneration therapy. Fibronectin is well known for an attachment protein for dentin surface. Also, Fibroblast growth factor (FGF) is well known to enhance the periodontal regeneration. The purpose of this study was to evaluation the effect of fibronection and FGF on the attachment rate and the cellular activity. Human gingival fibroblast and periodontal ligament cells were cultured from the teeth extracted for non-periodontal reson. Cultured human gingival fibroblast and periodontal ligament cells in vitro were treated with fibronectin and FGF a various dosage and culture times. Cellular activity was examined by MTT assay. The results of this study was demonstrated that cell attachment rate of experimental group was under the control value at 1st, 2nd, 3rd incubation day. But, at 3rd incubation day, attchment value tended to return to the control value. In case of fibronectin alone application, cellular activity was decreased than that of control at 1st, 2nd incubation day. But 3rd day, cellular activity was returned to the control value. The activity of gingival fibroblast in FGF alone application was decreased thatn that of control at each incubation day. But activity of periodontal cell group was increased cell activities at 2nd, 3rd day. Additionally cellular activity of fibronectin & FGF combined application on gingival fibroblast group was similar to control value at incubation day. But activity of periodontal ligament cell group was increased at 2nd, 3rd day compared with control group.This study demonstrated that combined application of fibronectin & FGF induced the selective chemotaxis for periodontal ligament cell in vitro.

  • PDF

Basic Fibroblast Growth Factor Increases Intracellular Magnesium Concentration through the Specific Signaling Pathways

  • Hong, Bing-Zhe;Park, Sun-Ah;Kim, Han-Na;Ma, Tian-Ze;Kim, Han-Gyu;Kang, Hyung-Sub;Kim, Hwan-Gyu;Kwak, Yong-Geun
    • Molecules and Cells
    • /
    • v.28 no.1
    • /
    • pp.13-17
    • /
    • 2009
  • Basic fibroblast growth factor (bFGF) plays an important role in angiogenesis. However, the underlying mechanisms are not clear. $Mg^{2+}$ is the most abundant intracellular divalent cation in the body and plays critical roles in many cell functions. We investigated the effect of bFGF on the intracellular $Mg^{2+}$ concentration ($[Mg^{2+}]_i$) in human umbilical vein endothelial cells (HUVECs). bFGF increased ($[Mg^{2+}]_i$) in a dose-dependent manner, independent of extracellular $Mg^{2+}$. This bFGF-induced $[Mg^{2+}]_i$ increase was blocked by tyrosine kinase inhibitors (tyrphostin A-23 and genistein), phosphatidylinositol 3-kinase (PI3K) inhibitors (wortmannin and LY294002) and a phospholipase $C{\gamma}$ ($PLC{\gamma}$) inhibitor (U73122). In contrast, mitogen-activated protein kinase inhibitors (SB202190 and PD98059) did not affect the bFGF-induced $[Mg^{2+}]_i$ increase. These results suggest that bFGF increases the $[Mg^{2+}]_i$ from the intracellular $Mg^{2+}$ stores through the tyrosine kinase/PI3K/$PLC{\gamma}$-dependent signaling pathways.

Critical role of protein L-isoaspartyl methyltransferase in basic fibroblast growth factor-mediated neuronal cell differentiation

  • Dung, To Thi Mai;Yi, Young-Su;Heo, Jieun;Yang, Woo Seok;Kim, Ji Hye;Kim, Han Gyung;Park, Jae Gwang;Yoo, Byong Chul;Cho, Jae Youl;Hong, Sungyoul
    • BMB Reports
    • /
    • v.49 no.8
    • /
    • pp.437-442
    • /
    • 2016
  • We aimed to study the role of protein L-isoaspartyl methyltransferase (PIMT) in neuronal differentiation using basic fibroblast growth factor (bFGF)-induced neuronal differentiation, characterized by cell-body shrinkage, long neurite outgrowth, and expression of neuronal differentiation markers light and medium neurofilaments (NF). The bFGF-mediated neuronal differentiation of PC12 cells was induced through activation of mitogen-activated protein kinase (MAPK) signaling molecules [MAPK kinase 1/2 (MEK1/2), extracellular signal-regulated kinase 1/2 (ERK1/2), and p90RSK], and phosphatidylinositide 3-kinase (PI3K)/Akt signaling molecules PI3Kp110β, PI3Kp110γ, Akt, and mTOR. Inhibitors (adenosine dialdehyde and S-adenosylhomocysteine) of protein methylation suppressed bFGF-mediated neuronal differentiation of PC12 cells. PIMT-eficiency caused by PIMT-specific siRNA inhibited neuronal differentiation of PC12 cells by suppressing phosphorylation of MEK1/2 and ERK1/2 in the MAPK signaling pathway and Akt and mTOR in the PI3K/Akt signaling pathway. Therefore, these results suggested that PIMT was critical for bFGF-mediated neuronal differentiation of PC12 cells and regulated the MAPK and Akt signaling pathways.

Effects of Astragalus Membranaceus on Angiogenesis (황기가 혈관 형성에 미치는 영향)

  • Seo, Dong-Min;Choi, Do-Young;Lee, Jae-Dong
    • Journal of Acupuncture Research
    • /
    • v.24 no.2
    • /
    • pp.113-123
    • /
    • 2007
  • 목적 : 황기가 혈관 신생 작용이 있는지에 관하여 관찰한다. 황기는 상처의 치유나 허혈성 질환에 효과를 나타내는 것으로 알려져있다. 이러한 효과가 황기의 혈관 신생작용과의 관련성을 이해하며 향후 임상에 쓰일 수 있는 황기 약침액 개발을 위한 기초 자료를 목표로 한다. 방법 : 황기의 혈관 신생 작용의 관찰을 위하여 human umbilical vein endothelial cells(HUVECs)와 Matrigel angiogenesis model을 이용하여 연구하였다. 결과 : 황기는 용량에 따라서 HUVECs의 증식을 나타내었다. 또한 혈관 내피 세포의 이동과 관형 형성을 보였다. 혈관 신생 물질인 basic fibroblast growth factor(bFGF)가 황기에 의해 증가하였다. Matrigel angiogenesis model에서 황기는 조직학적으로 혈관 형성을 촉진하였으며,헤모글로빈의 증가를 나타내었다.

  • PDF