• 제목/요약/키워드: Fibrobacter succinogenes

검색결과 38건 처리시간 0.028초

Effects of Flavonoid-rich Plant Extracts on In vitro Ruminal Methanogenesis, Microbial Populations and Fermentation Characteristics

  • Kim, Eun T.;Guan, Le Luo;Lee, Shin J.;Lee, Sang M.;Lee, Sang S.;Lee, Il D.;Lee, Su K.;Lee, Sung S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권4호
    • /
    • pp.530-537
    • /
    • 2015
  • The objective of this study was to evaluate the in vitro effects of flavonoid-rich plant extracts (PE) on ruminal fermentation characteristics and methane emission by studying their effectiveness for methanogenesis in the rumen. A fistulated Holstein cow was used as a donor of rumen fluid. The PE (Punica granatum, Betula schmidtii, Ginkgo biloba, Camellia japonica, and Cudrania tricuspidata) known to have high concentrations of flavonoid were added to an in vitro fermentation incubated with rumen fluid. Total gas production and microbial growth with all PE was higher than that of the control at 24 h incubation, while the methane emission was significantly lower (p<0.05) than that of the control. The decrease in methane accumulation relative to the control was 47.6%, 39.6%, 46.7%, 47.9%, and 48.8% for Punica, Betula, Ginkgo, Camellia, and Cudrania treatments, respectively. Ciliate populations were reduced by more than 60% in flavonoid-rich PE treatments. The Fibrobacter succinogenes diversity in all added flavonoid-rich PE was shown to increase, while the Ruminoccocus albus and R. flavefaciens populations in all PE decreased as compared with the control. In particular, the F. succinogenes community with the addition of Birch extract increased to a greater extent than that of others. In conclusion, the results of this study showed that flavonoid-rich PE decreased ruminal methane emission without adversely affecting ruminal fermentation characteristics in vitro in 24 h incubation time, suggesting that the flavonoid-rich PE have potential possibility as bio-active regulator for ruminants.

Rumen Microbial Population in the In vitro Fermentation of Different Ratios of Forage and Concentrate in the Presence of Whole Lerak (Sapindus rarak) Fruit Extract

  • Suharti, Sri;Astuti, Dewi Apri;Wina, Elizabeth;Toharmat, Toto
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권8호
    • /
    • pp.1086-1091
    • /
    • 2011
  • This experiment was designed to investigate the effect of lerak extract on the dynamic of rumen microbes in the in vitro fermentation of diet with different ratios of forage and concentrate. In vitro fermentation was conducted according to the method of Tilley and Terry (1963). The design of experiment was a factorial block design with 2 factors. The first factor was the ratio of forage and concentrate (90:10, 80:20, and 70:30 w/w) and the second factor was the level of lerak extract (0, 0.6, and 0.8 mg/ml). Total volatile fatty acid (VFA) concentration, proportional VFA and NH3 concentration were measured at 4 h incubation. Protozoal numbers in the buffered rumen fluid after 4 and 24 h of incubation were counted under a microscope. Bacterial DNAs of buffered rumen fluid were isolated from incubated samples after 24 h of incubation using a QiaAmp kit. Total bacteria, Fibrobacter succinogenes, Ruminococcus albus, and Prevotella ruminicola were quantified using real time polymerase chain reaction (PCR). Lerak extract markedly reduced protozoal numbers in buffered rumen fluid of all diets after 24 h of incubation. Total bacteria did not change with lerak extract addition. While no difference in F. succinogenes was found, there was a slight increase in R. albus number and a significant enhancement in P. ruminicola number by increasing the level of lerak extract in all diets. Propionate concentration significantly increased in the presence of lerak extract at level 0.8 mg/ml. It was concluded that the addition of lerak extract could modify rumen fermentation and had positive effects on rumen microbes.

반추동물용 사료첨가제개발을 위한 홀스타인 젖소의 반추위로부터 분리한 혐기성 섬유소 분해균의 특성연구 (Isolation of Anaerobic Cellulolytic Bacteria from the Rumen of Holstein Dairy Cows to Develop Feed Additives for Ruminants)

  • 최낙진;이기영;정광화;김창현
    • 한국유기농업학회지
    • /
    • 제20권3호
    • /
    • pp.327-343
    • /
    • 2012
  • In order to develop a high cellulolytic direct-fed microorganism (DFM) for ruminant productivity improvement, this study isolated cellulolytic bacteria from the rumen of Holstein dairy cows, and compared their cellulolytic abilities via DM degradability, gas production and cellulolytic enzyme activities. Twenty six bacteria were isolated from colonies grown in Dehority's artificial (DA) medium with 2% agar and cultured in DA medium containing filter paper at $39^{\circ}C$ for 24h. 16s rDNA gene sequencing of four strains from isolated bacteria showed that H8, H20 and H25 strains identified as Ruminococcus flavefaciens, and H23 strain identified as Fibrobacter succinogenes. H20 strain had higher degradability of filter paper compared with others during the incubation. H8 (R. flavefaciens), H20 (R. flavefaciens), H23 (F. succinogenes), H25 (R. flavefaciens) and RF (R. flavefaciens sijpesteijn, ATCC 19208) were cultured in DA medium with filter paper as a single carbon source for 0, 1, 2, 3, 4 and 6 days without shaking at $39^{\circ}C$, respectively. Dry matter degradability rates of H20, H23 and H25 were relatively higher than those of H8 and RF since 2 d incubation. The cumulative gas production of isolated cellulolytic bacteria increased with incubation time. At every incubation time, the gas production was highest in H20 strain. The activities of carboxymethylcellulase (CMCase) and Avicelase in the culture supernatant were significantly higher in H20 strain compared with others at every incubation time (p<0.05). Therefore, although further researches are required, the present results suggest that H20 strain could be a candidate of DFM in animal feed due to high cellulolytic ability.

Effect of Triticale Dried Distillers Grains with Solubles on Ruminal Bacterial Populations as Revealed by Real Time Polymerase Chain Reaction

  • Wu, R.B.;Munns, K.;Li, J.Q.;John, S.J.;Wierenga, K.;Sharma, R.;Mcallister, T.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권11호
    • /
    • pp.1552-1559
    • /
    • 2011
  • Real time PCR was used in this study to determine the effect of triticale dried distillers grains with solubles (TDDGS) as a replacement for grain or barley silage in finishing diets on the presence of six classical ruminal bacterial species (Succinivibrio dextrinosolvens, Selenomonas ruminantium, Streptococcus bovis, Megasphaera elsdenii, Prevotella ruminicola and Fibrobacter succinogenes) within the rumen contents of feedlot cattle. This study was divided into a step-wise adaptation experiment (112 days) that examined the effects of adaptation to diets containing increasing levels of TDDGS up to 30% (n = 4), a short-term experiment comparing animals (n = 16) fed control, 20%, 25% or 30% TDDGS diets over 28 days, and a rapid transition experiment (56 days) where animals (n = 4) were rapidly switched from a diet containing 30% TDDGS to a barley-based diet with no TDDGS. It was found that feeding TDDGS as replacement for barley grain (control vs. 20% TDDGS) decreased 16S rRNA copy numbers of starch-fermenting S. ruminantium and S. bovis (p<0.001 and p = 0.04, respectively), but did not alter 16S rRNA copy numbers of the other rumen bacteria. Furthermore, feeding TDDGS as a replacement barley silage (20% vs. 25% and 30% TDDGS) increased 16S rRNA copy numbers of S. ruminantium, M. elsdenii and F. succinogenes (p<0.001; p = 0.03 and p<0.001, respectively), but decreased (p<0.001) the 16S rRNA copy number of P. ruminicola. Upon removal of 30% TDDGS and return to the control diet, 16S rRNA copy numbers of S. ruminantium, M. elsdenii and F. succinogenes decreased (p = 0.01; p = 0.03 and p = 0.01, respectively), but S. dextrinosolvens and S. bovis increased (p = 0.04 and p = 0.009, respectively). The results suggest that replacement of TDDGS for grain reduces 16S rRNA copy numbers of starch-fermenting bacteria, whereas substitution for barley silage increases 16S rRNA copy numbers of bacteria involved in fibre digestion and the metabolism of lactic acid. This outcome supports the contention that the fibre in TDDGS is highly fermentable.

양돈슬러리를 이용한 혐기소화에서 미생물 첨가가 메탄발생에 미치는 영향 (Effects of Supplementation of Mixed Methanogens and Rumen Cellulolytic Bacteria on Biochemical Methane Potential with Pig Slurry)

  • 김지애;윤영만;정광화;김창현
    • 한국토양비료학회지
    • /
    • 제45권6호
    • /
    • pp.1049-1057
    • /
    • 2012
  • 본 연구는 메탄생성에 직접적으로 관여하는 혼합 메탄균과 셀롤로스 등의 고분자 물질의 가수분해 반응에 활성이 뛰어난 반추위 내 혐기성 섬유소분해균 중에서 대표적인 Fibrobacter succinogenes, Ruminococcus flavefaciens 및 Ruminococcus albus를 biochemical methane potential (BMP) 시험에 첨가하였을 때 메탄 발생에 미치는 영향을 조사하고자 수행되었다. BMP시험은 멸균증류수를 첨가한 control과 각각의 미생물 배양액을 첨가한 혼합 메탄균 첨가구 (M), F. succinogenes 첨가구 (FS) R. flavefaciens 첨가구 (RF), R. albus 첨가구 (RA) 및 RA+FS 혼합첨가구와 M+RA+FS 혼합 첨가구로 총 7개 처리구로 각 처리구별 3반복으로 진행되었다. 미생물 배양액의 첨가량은 식종액과 양돈슬러리에 1% (0.5 mL), 3% (1.5 mL) 및 5% (2.5 mL) 씩 첨가 하였다. BMP 시험을 위해 60일간 배양이 지속되었고 중온소화를 위해 $38^{\circ}C$의 배양기에서 수행되었다. 실험의 결과 총 바이오가스 발생량은 5% RF와 RA+FS가 대조구에 비하여 8.1 및 8.4%로 가스발생량이 유의적으로 높았다(p<0.05). 메탄발생량은 3% 미생물 배양액 첨가구 중 M+RA+FS를 제외하고 대조구에 비하여 증가시키는 경향을 보였으며, 5% 배양액을 첨가하였을 때는 대조구에 대하여 5%의 M, FS, RF, RA, RA+FS, 및 M+RA+FS RF가 각각 12.1, 12.6, 17.3, 13.7, 17.9 및 14.7%로 메탄가스발생량을 증가시켰다 (p<0.05). TS 및 VS 분해율은 가스발생량과는 관계없이 모든 처리구에서 미생물 배양액의 첨가량이 증가하더라도 차이가 없었다. BMP 종료시 배양액내 pH는 모든 처리구가 7.527~7.657의 범위로 메탄발효에 큰 영향을 주지 않았다. 결론적으로, 본 실험에서는 양돈 슬러리의 성분특성으로 인해 가수분해단계와 메탄생성단계 모두에 첨가한 미생물 배양액이 효과가 있었으나, 5% 첨가수준을 제외하고 낮은 첨가수준에서는 첨가효과가 나타나지는 않았다.

Influence of Yeast Fermented Cassava Chip Protein (YEFECAP) and Roughage to Concentrate Ratio on Ruminal Fermentation and Microorganisms Using In vitro Gas Production Technique

  • Polyorach, S.;Wanapat, M.;Cherdthong, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권1호
    • /
    • pp.36-45
    • /
    • 2014
  • The objective of this study was to determine the effects of protein sources and roughage (R) to concentrate (C) ratio on in vitro fermentation parameters using a gas production technique. The experimental design was a $2{\times}5$ factorial arrangement in a completely randomized design (CRD). Factor A was 2 levels of protein sources yeast fermented cassava chip protein (YEFECAP) and soybean meal (SBM) and factor B was 5 levels of roughage to concentrate (R:C) ratio at 80:20, 60:40, 40:60, 20:80, and 0:100, respectively. Rice straw was used as a roughage source. It was found that gas production from the insoluble fraction (b) of YEFECAP supplemented group was significantly higher (p<0.05) than those in SBM supplemented group. Moreover, the intercept value (a), gas production from the insoluble fraction (b), gas production rate constants for the insoluble fraction (c), potential extent of gas production (a+b) and cumulative gas production at 96 h were influenced (p<0.01) by R:C ratio. In addition, protein source had no effect (p>0.05) on ether in vitro digestibility of dry matter (IVDMD) and organic (IVOMD) while R:C ratio affected the IVDMD and IVOMD (p<0.01). Moreover, YEFECAP supplanted group showed a significantly increased (p<0.05) total VFA and $C_3$ while $C_2$, $C_2:C_3$ and $CH_4$ production were decreased when compared with SBM supplemented group. In addition, a decreasing R:C ratio had a significant effect (p<0.05) on increasing total VFA, $C_3$ and $NH_3$-N, but decreasing the $C_2$, $C_2:C_3$ and CH4 production (p<0.01). Furthermore, total bacteria, Fibrobacter succinogenes, Ruminococcus flavefaciens and Ruminococcus albus populations in YEFECAP supplemented group were significantly higher (p<0.05) than those in the SBM supplemented group while fungal zoospores, methanogens and protozoal population remained unchanged (p>0.05) as compared between the two sources of protein. Moreover, fungal zoospores and total bacteria population were significantly increased (p<0.01) while, F. succinogenes, R. flavefaciens, R. albus, methanogens and protozoal population were decreased (p<0.01) with decreasing R:C ratio. In conclusion, YEFECAP has a potential for use as a protein source for improving rumen fermentation efficiency in ruminants.

Effect of Exogenous Fibrolytic Enzyme Application on the Microbial Attachment and Digestion of Barley Straw In vitro

  • Wang, Y.;Ramirez-Bribiesca, J.E.;Yanke, L.J.;Tsang, A.;McAllister, T.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권1호
    • /
    • pp.66-74
    • /
    • 2012
  • The effects of exogenous fibrolytic enzymes (EFE; a mixture of two preparations from Trichoderma spp., with predominant xylanase and ${\beta}$-glucanase activities, respectively) on colonization and digestion of ground barley straw and alfalfa hay by Fibrobacter succinogenes S85 and Ruminococcus flavefaciens FD1 were studied in vitro. The two levels (28 and 280 ${\mu}g$/ml) of EFE tested and both bacteria were effective at digesting NDF of hay and straw. With both substrates, more NDF hydrolysis (p<0.01) was achieved with EFE alone at 280 than at 28 ${\mu}g$/ml. A synergistic effect (p<0.01) of F. succinogenes S85 and EFE on straw digestion was observed at 28 but not 280 ${\mu}g$/ml of EFE. Strain R. flavefaciens FD1 digested more (p<0.01) hay and straw with higher EFE than with lower or no EFE, but the effect was additive rather than synergistic. Included in the incubation medium, EFE showed potential to improve fibre digestion by cellulolytic ruminal bacteria. In a second batch culture experiment using mixed rumen microbes, DM disappearance (DMD), gas production and incorporation of $^{15}N$ into particle-associated microbial N ($^{15}N$-PAMN) were higher (p<0.001) with ammoniated (5% w/w; AS) than with native (S) ground barley straw. Application of EFE to the straws increased (p<0.001) DMD and gas production at 4 and 12 h, but not at 48 h of the incubation. EFE applied onto S increased (p<0.01) $^{15}N$-PAMN at 4 h only, but EFE on AS increased (p<0.001) $^{15}N$-PAMN at all time points. Prehydrolysis increased (p<0.01) DMD from both S and AS at 4 and 12 h, but reduced (p<0.01) $^{15}N$-PAMN in the early stage (4 h) of the incubation, as compared to non-prehydrolyzed samples. Application of EFE to barley straw increased rumen bacterial colonization of the substrate, but excessive hydrolytic action of EFE prior to incubation decreased it.

The Effect of Plant Extracts on In-vitro Ruminal Fermentation, Methanogenesis and Methane-related Microbes in the Rumen

  • Kim, E.T.;Min, K.S.;Kim, C.H.;Moon, Y.H.;Kim, S.C.;Lee, Sung-Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권4호
    • /
    • pp.517-522
    • /
    • 2013
  • The effect on methanogens attached to the surface of rumen ciliate protozoa by the addition of plant extracts (pine needles and ginkgo leaves) was studied with particular reference to their effectiveness for decreasing methane emission. The plant extracts (pine needles and ginkgo leaves) were added to an in vitro fermentation incubated with rumen fluid. The microbial population including bacteria, ciliated-associated methanogen, four different groups of methanogens and Fibrobacter succinogenes were quantified by using the real-time PCR. Gas profiles including methane, carbon dioxide and hydrogen, and runinal fermentation characteristics were observed in vitro. The methane emission from samples with an addition of individual juices from pine needles, ginkgo leaves and 70% ethanol extract from ginko leaves was significantly lower (p<0.05, 27.1, 28.1 and 28.1 vs 34.0 ml/g DM) than that of the control, respectively. Total VFAs in samples with an addition of any of the plant extracts were significantly lower than that of the control (p<0.05) as well. The order Methanococcales and the order Methanosarcinales were not detected by using PCR in any incubated mixtures. The ciliate-associated methanogens population decreased from 25% to 49% in the plant extacts as compared to control. We speculate that the supplementation of juice from pine needles and ginkgo leaves extract (70% ethanol extract) decreased the protozoa population resulting in a reduction of methane emission in the rumen and thus inhibiting methanogenesis. The order Methanobacteriales community was affected by addition of all plant extracts and decreased to less than the control, while the order Methanomicrobiales population showed an increase to more than that of the control. The F. succinogenes, the major fibrolytic microorganism, population in all added plant extracts was increased to greater than that of the control. In conclusion, pine needles and ginkgo leaves extracts appear to have properties that decrease methanogenesis by inhibiting protozoa species and may have a potential for use as additives for ruminants.

Enhancing Butyrate Production, Ruminal Fermentation and Microbial Population through Supplementation with Clostridium saccharobutylicum

  • Miguel, Michelle A.;Lee, Sung Sill;Mamuad, Lovelia L.;Choi, Yeon Jae;Jeong, Chang Dae;Son, Arang;Cho, Kwang Keun;Kim, Eun Tae;Kim, Sang Bum;Lee, Sang Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권7호
    • /
    • pp.1083-1095
    • /
    • 2019
  • Butyrate is known to play a significant role in energy metabolism and regulating genomic activities that influence rumen nutrition utilization and function. Thus, this study investigated the effects of an isolated butyrate-producing bacteria, Clostridium saccharobutylicum, in rumen butyrate production, fermentation parameters and microbial population in Holstein-Friesian cow. An isolated butyrate-producing bacterium from the ruminal fluid of a Holstein-Friesian cow was identified and characterized as Clostridium saccharobutylicum RNAL841125 using 16S rRNA gene sequencing and phylogenetic analyses. The bacterium was evaluated on its effects as supplement on in vitro rumen fermentation and microbial population. Supplementation with $10^6CFU/ml$ Clostridium saccharobutylicum increased (p < 0.05) microbial crude protein, butyrate and total volatile fatty acids concentration but had no significant effect on $NH_3-N$ at 24 h incubation. Butyrate and total VFA concentrations were higher (p < 0.05) in supplementation with $10^6CFU/ml$ Clostridium saccharobutylicum compared with control, with no differences observed for total gas production, $NH_3-N$ and propionate concentration. However, as the inclusion rate (CFU/ml) of C. saccharobutylicum was increased, reduction of rumen fermentation values was observed. Furthermore, butyrate-producing bacteria and Fibrobacter succinogenes population in the rumen increased in response with supplementation of C. saccharobutylicum, while no differences in the population in total bacteria, protozoa and fungi were observed among treatments. Overall, our study suggests that supplementation with $10^6CFU/ml$ C. saccharobutylicum has the potential to improve ruminal fermentation through increased concentrations of butyrate and total volatile fatty acid, and enhanced population of butyrate-producing bacteria and cellulolytic bacteria F. succinogenes.

Effects of Nitrate Addition on Rumen Fermentation, Bacterial Biodiversity and Abundance

  • Zhao, Liping;Meng, Qingxiang;Ren, Liping;Liu, Wei;Zhang, Xinzhuang;Huo, Yunlong;Zhou, Zhenming
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권10호
    • /
    • pp.1433-1441
    • /
    • 2015
  • This study examined changes of rumen fermentation, ruminal bacteria biodiversity and abundance caused by nitrate addition with Ion Torrent sequencing and real-time polymerase chain reaction. Three rumen-fistulated steers were fed diets supplemented with 0%, 1%, and 2% nitrate (dry matter %) in succession. Nitrate supplementation linearly increased total volatile fatty acids and acetate concentration obviously (p = 0.02; p = 0.02; p<0.01), butyrate and isovalerate concentration numerically (p = 0.07). The alpha (p>0.05) and beta biodiversityof ruminal bacteria were not affected by nitrate. Nitrate increased typical efficient cellulolytic bacteria species (Ruminococcus flavefaciens, Ruminococcus ablus, and Fibrobacter succinogenes) (p<0.01; p = 0.06; p = 0.02). Ruminobactr, Sphaerochaeta, CF231, and BF311 genus were increased by 1% nitrate. Campylobacter fetus, Selenomonas ruminantium, and Mannheimia succiniciproducens were core nitrate reducing bacteria in steers and their abundance increased linearly along with nitrate addition level (p<0.01; p = 0.02; p = 0.04). Potential nitrate reducers in the rumen, Campylobacter genus and Cyanobacteria phyla were significantly increased by nitrate (p<0.01; p = 0.01).To the best of our knowledge, this was the first detailed view of changes in ruminal microbiota by nitrate. This finding would provide useful information on nitrate utilization and nitrate reducer exploration in the rumen.