References
- Andries, J. I., F. X. Buysse, D. L. Debrabander, and B. G.Cottyn. 1987. Isoacids in ruminant nutrition: Their role in ruminal and intermediary metabolism and possible influences on performances -A review. Anim. Feed Sci. Technol. 18:169-180. https://doi.org/10.1016/0377-8401(87)90069-1
- Ballard, F. J. 1972. Supply and utilization of acetate in mammals. Am. J. Clin. Nutr. 25:773-779. https://doi.org/10.1093/ajcn/25.8.773
- Broderick, G. A. and J. H. Kang. 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 63:64-75. https://doi.org/10.3168/jds.S0022-0302(80)82888-8
- Bru, D., A. Sarr,and L. Philippot. 2007. Relative abundances of proteobacterial membrane-bound and periplasmic nitrate reductases in selected environments. Appl. Environ. Microbiol. 73:5971-5974. https://doi.org/10.1128/AEM.00643-07
- Caporaso, J. G., J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, N. Fierer, A. G. Pena, J. K. Goodrich, and J. I. Gordon et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7:335-336. https://doi.org/10.1038/nmeth.f.303
- Dai, J. F., Q. X. Meng, and Z. M. Zhou. 2009. Effect of nitrate addition level on in vitro ruminal fermentation characteristics and microbial efficiency. Scientia AgricSinica. 43:3418-3424.
- Denman, S. E. and C. S. McSweeney. 2006. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 58:572-582. https://doi.org/10.1111/j.1574-6941.2006.00190.x
- Erwin, E. S., G. J. Marco, and E. M. Emery. 1961. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J Dairy Sci. 44:1768-1771. https://doi.org/10.3168/jds.S0022-0302(61)89956-6
- Evans, N. J., J. M. Brown, R. D. Murray, B. Getty, R. J. Birtles, C. A. Hart, and S. D. Carter. 2011. Characterization of novel bovine gastrointestinal tract Treponema isolates and comparison with bovine digital dermatitis treponemes. Appl. Environ. Microbiol. 77:138-177. https://doi.org/10.1128/AEM.00993-10
- Flores, E., J. E. Frias, L. M. Rubio, and A. Herrero. 2005. Photosynthetic nitrate assimilation in cyanobacteria. Photosyn. Res. 83:117-133. https://doi.org/10.1007/s11120-004-5830-9
- Group Jumpstart Consortium Human Microbiome Project Data Generation Working Group. 2012. Evaluation of 16S rDNA-based community profiling for human microbiome research. PLoS ONE. 7(6):e39315. https://doi.org/10.1371/journal.pone.0039315
- Guo, W. S., D. M. Schaefer, X. X. Guo, L. P. Ren, and Q. X.Meng. 2009. Use of nitrate-nitrogen as a sole dietary nitrogen source to inhibit ruminal methanogenesis and to improve microbial nitrogen synthesis in vitro. AsianAustralas. J. Anim. Sci. 22: 542-549. https://doi.org/10.5713/ajas.2009.80361
- Hulshof, R., A. Berndt, W. Gerrits, J. Dijkstra, S. M. van Zijderveld, J. R. Newbold, and H. B. Perdok. 2012. Dietary nitrate supplementation reduces methane emission in beef cattle fed sugarcane-based diets. J. Anim. Sci. 90:2317-2323. https://doi.org/10.2527/jas.2011-4209
- Isaacson, R. and H. B. Kim. 2012. The intestinal microbiome of the pig. Anim. Health Res. Rev. 13:100-109. https://doi.org/10.1017/S1466252312000084
- Lee, H. J., J. Y. Jung, Y. K. Oh, S. Lee, E. L. Madsen, and C. O. Jeon. 2012. Comparative survey of rumen microbial communities and metabolites across one caprine and three bovine groups, using bar-coded pyrosequencing and 1H nuclear magnetic resonance spectroscopy. Appl. Environ. Microbiol. 78: 5983-5993. https://doi.org/10.1128/AEM.00104-12
- Lewis, D. 1951. The metabolism of nitrate and nitrite in the sheep. 1. The reduction of nitrate in the rumen of the sheep. Biochem J. 48:175-180. https://doi.org/10.1042/bj0480175
- Lin, M., D. M. Schaefer, W. S. Guo, L. P. Ren,and Q. X. Meng. 2011. Comparisons of in vitro nitrate reduction, methanogenesis, and fermentation acid profile among rumen bacterial, protozoal and fungal fractions. Asian Australas. J. Anim. Sci. 24:471-478. https://doi.org/10.5713/ajas.2011.10288
- Lin, M., W. Guo, Q. Meng, D. M. Stevenson, P. J. Weimer, and D. M. Schaefer. 2013. Changes in rumen bacterial community composition in steers in response to dietary nitrate. Appl. Environ.Biotech. 97:8719-8727. https://doi.org/10.1007/s00253-013-5143-z
- Marais, J. P., J. J. Therion, R. I. Mackie, A. Kistner, and C. Dennison. 1988. Effect of nitrate and its reduction products on the growth and activity of the rumen microbialpopulation. Br. J. Nutr. 59: 301-313. https://doi.org/10.1079/BJN19880037
- Miller, W. G., G. Wang, T. T. Binnewies, and C. T. Parker. 2008. The complete genome sequence and analysis of the human pathogen Campylobacter lari. Foodborne Pathog. Dis. 5:371-386. https://doi.org/10.1089/fpd.2008.0101
- Palmer, K. andM. A. Horn. 2012. Actinobacterial nitrate reducers and proteobacterial denitrifiers are abundant in N2O-metabolizing palsa peat. Appl. Environ. Microbiol. 78:5584-5596. https://doi.org/10.1128/AEM.00810-12
- Parkhill, J., B. W. Wren, K. Mungall,J. M. Ketley, C. Churcher, D. Basham, T. Chillingworth, R. M. Davies, T. Feltwell, and S. Holroyd et al. 2000. The genome sequence of the food-borne pathogen Campylobacter jejunireveals hypervariable sequences. Nature 403(6770):665-668. https://doi.org/10.1038/35001088
- Patel, R. K. and M. Jain. 2012. NGS QC Toolkit: A toolkit for quality control of next generation sequencing data. PLoS ONE, 7(2):e30619. https://doi.org/10.1371/journal.pone.0030619
- Pitta, D. W., W. E. Pinchak, S. E. Dowd, J. Osterstock, V. Gontcharova, E. Youn, K. Dorton, I. Yoon, B. R. Min, J. D. Fulford, T. A. Wickersham, and D. P. Malinowski. 2010. Rumen bacterial diversity dynamics associated with changing from bermudagrass hay to grazed winter wheat diets. Microb.Ecol. 59:511-522. https://doi.org/10.1007/s00248-009-9609-6
- Price, M. N., P. S. Dehal, and A. P. Arkin. 2009. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26:1641-1650. https://doi.org/10.1093/molbev/msp077
- Prasanna, R., V. Kumar, S. Kumar, A. Kumar Yadav, U. Tripathi, A. Kumar Singh, M. C. Jain, P. Gupta, P. K. Singh, and N. Sethunathan. 2002. Methane production in rice soil is inhibited by cyanobacteria. Microbiol.Res. 157:1-6. https://doi.org/10.1078/0944-5013-00124
- Sar, C., B. Mwenya, B. Santoso, K. Takaura, R. Morikawa, N. Isogai, Y. Asakura, Y. Toride, and J. Takahashi. 2005. Effect of Escherichia coli wild type or its derivative with high nitrite reductase activity on in vitro ruminal methanogenesis and nitrate/nitrite reduction. J. Anim. Sci. 83:644-652. https://doi.org/10.2527/2005.833644x
- Slyter, L. L. and P. A. Putnam. 1967. In vivo vs in vitro continuous culture of ruminal microbial populations.J. Anim. Sci. 26: 1421-1427. https://doi.org/10.2527/jas1967.2661421x
- Stewart, C. S., H. J. Flint, and M. P. Bryant. 1997. The rumen bacteria. In:The Rumen Microbial Ecosystem, 2nd ed.,By (P. N. Hobson, and C. S. Stewart). Blackie Academic and Professional, London, UK. 10-72.
- Stevenson, D. M. and P. J. Weimer. 2007. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Environ.Biotech.75:165-174. https://doi.org/10.1007/s00253-006-0802-y
- Thoetkiattikul, H., W. Mhuantong, T. Laothanachareon, S. Tangphatsornruang, V. Pattarajinda, L. Eurwilaichitr, and V. Champreda. 2013. Comparative analysis of microbial profiles in cow rumen fed with different dietary fiber by tagged 16S rRNA gene pyrosequencing. Curr. Microbiol. 67:130-137. https://doi.org/10.1007/s00284-013-0336-3
- Van Zijderveld, S. M., W. J. J. Gerrits, J. A. Apajalahti, J. R. Newbold, J. Dijkstra, R. A. Leng, and H. B. Perdok. 2010. Nitrate and sulfate: Effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J. Dairy Sci. 93:5856-5866. https://doi.org/10.3168/jds.2010-3281
- Weakley, D. G. and F. N. Owens. 1983. Influence of ammonia concentration on microbial protein synthesis in the rumen. Oklahoma Agr. Exp. Sta. MP-114, 39.
- Zened, A., S. Combes, L. Cauquil, J. Mariette, C. Klopp, O. Bouchez, M. A. Troegeler, and F. Enjalbert. 2013. Microbial ecology of the rumen evaluated by 454 GS FLX pyrosequencing is affected by starch and oil supplementation of diets. FEMS Microbiol. Ecol. 83:504-514. https://doi.org/10.1111/1574-6941.12011
- Zhou, Z., Q. Meng, and Z. Yu. 2011. Effects of methanogenic inhibitors on methane production and abundances of methanogens and cellulolytic bacteria in in vitro ruminal cultures. Appl. Environ. Microbiol. 77:2634-2639. https://doi.org/10.1128/AEM.02779-10
- Zhou, Z., Z. Yu, andQ. Meng. 2012. Effects of nitrate on methane production, fermentation, and microbial populations in in vitro ruminal cultures. Bioresour. Technol.103:173-179. https://doi.org/10.1016/j.biortech.2011.10.013
Cited by
- Characterization of the microbial communities along the gastrointestinal tract of sheep by 454 pyrosequencing analysis vol.30, pp.1, 2016, https://doi.org/10.5713/ajas.16.0166
- Insights on Alterations to the Rumen Ecosystem by Nitrate and Nitrocompounds vol.7, pp.1664-302X, 2016, https://doi.org/10.3389/fmicb.2016.00228
- Effect of urea-supplemented diets on the ruminal bacterial and archaeal community composition of finishing bulls vol.101, pp.15, 2017, https://doi.org/10.1007/s00253-017-8323-4
- Impact of levels of total digestible nutrients on microbiome, enzyme profile and degradation of feeds in buffalo rumen vol.12, pp.2, 2017, https://doi.org/10.1371/journal.pone.0172051
- Biofilm compartmentalisation of the rumen microbiome: modification of fermentation and degradation of dietary toxins vol.57, pp.11, 2017, https://doi.org/10.1071/AN17382
- Assessment of Ruminal Bacterial and Archaeal Community Structure in Yak (Bos grunniens) vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.00179
- The Structural and Functional Capacity of Ruminal and Cecal Microbiota in Growing Cattle Was Unaffected by Dietary Supplementation of Linseed Oil and Nitrate vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.00937
- Feeding a High Concentration Diet Induces Unhealthy Alterations in the Composition and Metabolism of Ruminal Microbiota and Host Response in a Goat Model vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.00138
- Substrate-Induced Response in Biogas Process Performance and Microbial Community Relates Back to Inoculum Source vol.6, pp.3, 2018, https://doi.org/10.3390/microorganisms6030080
- Nitrate decreases ruminal methane production with slight changes to ruminal methanogen composition of nitrate-adapted steers vol.18, pp.1, 2018, https://doi.org/10.1186/s12866-018-1164-1
- Effects of nitrate supplementation and forage level on gas production, nitrogen balance and dry-matter degradation in sheep vol.59, pp.3, 2019, https://doi.org/10.1071/AN17759
- Studies on bacterial community composition are affected by the time and storage method of the rumen content vol.12, pp.4, 2015, https://doi.org/10.1371/journal.pone.0176701
- Impact of winter enclosures on the gut bacterial microbiota of red deer in the Bavarian Forest National Park vol.2019, pp.1, 2015, https://doi.org/10.2981/wlb.00503
- Long-Term Encapsulated Nitrate Supplementation Modulates Rumen Microbial Diversity and Rumen Fermentation to Reduce Methane Emission in Grazing Steers vol.10, pp.None, 2015, https://doi.org/10.3389/fmicb.2019.00614
- Dietary Energy Level Promotes Rumen Microbial Protein Synthesis by Improving the Energy Productivity of the Ruminal Microbiome vol.10, pp.None, 2015, https://doi.org/10.3389/fmicb.2019.00847
- Dietary Bioactive Lipid Compounds Rich in Menthol Alter Interactions Among Members of Ruminal Microbiota in Sheep vol.10, pp.None, 2015, https://doi.org/10.3389/fmicb.2019.02038
- Immediate Effects of Ammonia Shock on Transcription and Composition of a Biogas Reactor Microbiome vol.10, pp.None, 2015, https://doi.org/10.3389/fmicb.2019.02064
- A meta-analysis of the bovine gastrointestinal tract microbiota vol.95, pp.6, 2015, https://doi.org/10.1093/femsec/fiz072
- Bacterial colonisation of reeds and cottonseed hulls in the rumen of Tarim red deer (Cervus elaphus yarkandensis) vol.112, pp.9, 2019, https://doi.org/10.1007/s10482-019-01260-0
- Encapsulated nitrate replacing soybean meal changes in vitro ruminal fermentation and methane production in diets differing in concentrate to forage ratio vol.90, pp.10, 2019, https://doi.org/10.1111/asj.13251
- Different dietary protein sources in low protein diets regulate colonic microbiota and barrier function in a piglet model vol.10, pp.10, 2015, https://doi.org/10.1039/c9fo01154d
- Rumen bacterial community responses to DPA, EPA and DHA in cattle and sheep: A comparative in vitro study vol.9, pp.1, 2015, https://doi.org/10.1038/s41598-019-48294-y
- Age-based dynamic changes of phylogenetic composition and interaction networks of health pig gut microbiome feeding in a uniformed condition vol.15, pp.None, 2015, https://doi.org/10.1186/s12917-019-1918-5
- In vitro gas production and rumen fermentation profile of fresh and ensiled genetically modified high–metabolizable energy ryegrass vol.103, pp.3, 2015, https://doi.org/10.3168/jds.2019-16781
- Inhibition of methanogenesis by nitrate, with or without defaunation, in continuous culture vol.103, pp.8, 2015, https://doi.org/10.3168/jds.2020-18325
- Brisket Disease Is Associated with Lower Volatile Fatty Acid Production and Altered Rumen Microbiome in Holstein Heifers vol.10, pp.9, 2020, https://doi.org/10.3390/ani10091712
- Insights into Metatranscriptome, and CAZymes of Buffalo Rumen Supplemented with Blend of Essential Oils vol.60, pp.4, 2015, https://doi.org/10.1007/s12088-020-00894-3
- Evidence for the amnion-fetal gut-microbial axis in late gestation beef calves 1 vol.4, pp.suppl1, 2015, https://doi.org/10.1093/tas/txaa138
- Active Rumen Bacterial and Protozoal Communities Revealed by RNA-Based Amplicon Sequencing on Dairy Cows Fed Different Diets at Three Physiological Stages vol.9, pp.4, 2015, https://doi.org/10.3390/microorganisms9040754
- Late Gestation Maternal Feed Restriction Decreases Microbial Diversity of the Placenta While Mineral Supplementation Improves Richness of the Fetal Gut Microbiome in Cattle vol.11, pp.8, 2021, https://doi.org/10.3390/ani11082219
- Effect of Methionine Supplementation on Rumen Microbiota, Fermentation, and Amino Acid Metabolism in In Vitro Cultures Containing Nitrate vol.9, pp.8, 2015, https://doi.org/10.3390/microorganisms9081717
- The materno-placental microbiome of gravid beef cows under moderate feed intake restriction vol.5, pp.suppl1, 2015, https://doi.org/10.1093/tas/txab172