DOI QR코드

DOI QR Code

Effects of Nitrate Addition on Rumen Fermentation, Bacterial Biodiversity and Abundance

  • Zhao, Liping (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Meng, Qingxiang (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Ren, Liping (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Liu, Wei (Beijing Computing Center) ;
  • Zhang, Xinzhuang (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Huo, Yunlong (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Zhou, Zhenming (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University)
  • Received : 2015.01.31
  • Accepted : 2015.03.25
  • Published : 2015.10.01

Abstract

This study examined changes of rumen fermentation, ruminal bacteria biodiversity and abundance caused by nitrate addition with Ion Torrent sequencing and real-time polymerase chain reaction. Three rumen-fistulated steers were fed diets supplemented with 0%, 1%, and 2% nitrate (dry matter %) in succession. Nitrate supplementation linearly increased total volatile fatty acids and acetate concentration obviously (p = 0.02; p = 0.02; p<0.01), butyrate and isovalerate concentration numerically (p = 0.07). The alpha (p>0.05) and beta biodiversityof ruminal bacteria were not affected by nitrate. Nitrate increased typical efficient cellulolytic bacteria species (Ruminococcus flavefaciens, Ruminococcus ablus, and Fibrobacter succinogenes) (p<0.01; p = 0.06; p = 0.02). Ruminobactr, Sphaerochaeta, CF231, and BF311 genus were increased by 1% nitrate. Campylobacter fetus, Selenomonas ruminantium, and Mannheimia succiniciproducens were core nitrate reducing bacteria in steers and their abundance increased linearly along with nitrate addition level (p<0.01; p = 0.02; p = 0.04). Potential nitrate reducers in the rumen, Campylobacter genus and Cyanobacteria phyla were significantly increased by nitrate (p<0.01; p = 0.01).To the best of our knowledge, this was the first detailed view of changes in ruminal microbiota by nitrate. This finding would provide useful information on nitrate utilization and nitrate reducer exploration in the rumen.

Keywords

References

  1. Andries, J. I., F. X. Buysse, D. L. Debrabander, and B. G.Cottyn. 1987. Isoacids in ruminant nutrition: Their role in ruminal and intermediary metabolism and possible influences on performances -A review. Anim. Feed Sci. Technol. 18:169-180. https://doi.org/10.1016/0377-8401(87)90069-1
  2. Ballard, F. J. 1972. Supply and utilization of acetate in mammals. Am. J. Clin. Nutr. 25:773-779. https://doi.org/10.1093/ajcn/25.8.773
  3. Broderick, G. A. and J. H. Kang. 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 63:64-75. https://doi.org/10.3168/jds.S0022-0302(80)82888-8
  4. Bru, D., A. Sarr,and L. Philippot. 2007. Relative abundances of proteobacterial membrane-bound and periplasmic nitrate reductases in selected environments. Appl. Environ. Microbiol. 73:5971-5974. https://doi.org/10.1128/AEM.00643-07
  5. Caporaso, J. G., J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, N. Fierer, A. G. Pena, J. K. Goodrich, and J. I. Gordon et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7:335-336. https://doi.org/10.1038/nmeth.f.303
  6. Dai, J. F., Q. X. Meng, and Z. M. Zhou. 2009. Effect of nitrate addition level on in vitro ruminal fermentation characteristics and microbial efficiency. Scientia AgricSinica. 43:3418-3424.
  7. Denman, S. E. and C. S. McSweeney. 2006. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 58:572-582. https://doi.org/10.1111/j.1574-6941.2006.00190.x
  8. Erwin, E. S., G. J. Marco, and E. M. Emery. 1961. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J Dairy Sci. 44:1768-1771. https://doi.org/10.3168/jds.S0022-0302(61)89956-6
  9. Evans, N. J., J. M. Brown, R. D. Murray, B. Getty, R. J. Birtles, C. A. Hart, and S. D. Carter. 2011. Characterization of novel bovine gastrointestinal tract Treponema isolates and comparison with bovine digital dermatitis treponemes. Appl. Environ. Microbiol. 77:138-177. https://doi.org/10.1128/AEM.00993-10
  10. Flores, E., J. E. Frias, L. M. Rubio, and A. Herrero. 2005. Photosynthetic nitrate assimilation in cyanobacteria. Photosyn. Res. 83:117-133. https://doi.org/10.1007/s11120-004-5830-9
  11. Group Jumpstart Consortium Human Microbiome Project Data Generation Working Group. 2012. Evaluation of 16S rDNA-based community profiling for human microbiome research. PLoS ONE. 7(6):e39315. https://doi.org/10.1371/journal.pone.0039315
  12. Guo, W. S., D. M. Schaefer, X. X. Guo, L. P. Ren, and Q. X.Meng. 2009. Use of nitrate-nitrogen as a sole dietary nitrogen source to inhibit ruminal methanogenesis and to improve microbial nitrogen synthesis in vitro. AsianAustralas. J. Anim. Sci. 22: 542-549. https://doi.org/10.5713/ajas.2009.80361
  13. Hulshof, R., A. Berndt, W. Gerrits, J. Dijkstra, S. M. van Zijderveld, J. R. Newbold, and H. B. Perdok. 2012. Dietary nitrate supplementation reduces methane emission in beef cattle fed sugarcane-based diets. J. Anim. Sci. 90:2317-2323. https://doi.org/10.2527/jas.2011-4209
  14. Isaacson, R. and H. B. Kim. 2012. The intestinal microbiome of the pig. Anim. Health Res. Rev. 13:100-109. https://doi.org/10.1017/S1466252312000084
  15. Lee, H. J., J. Y. Jung, Y. K. Oh, S. Lee, E. L. Madsen, and C. O. Jeon. 2012. Comparative survey of rumen microbial communities and metabolites across one caprine and three bovine groups, using bar-coded pyrosequencing and 1H nuclear magnetic resonance spectroscopy. Appl. Environ. Microbiol. 78: 5983-5993. https://doi.org/10.1128/AEM.00104-12
  16. Lewis, D. 1951. The metabolism of nitrate and nitrite in the sheep. 1. The reduction of nitrate in the rumen of the sheep. Biochem J. 48:175-180. https://doi.org/10.1042/bj0480175
  17. Lin, M., D. M. Schaefer, W. S. Guo, L. P. Ren,and Q. X. Meng. 2011. Comparisons of in vitro nitrate reduction, methanogenesis, and fermentation acid profile among rumen bacterial, protozoal and fungal fractions. Asian Australas. J. Anim. Sci. 24:471-478. https://doi.org/10.5713/ajas.2011.10288
  18. Lin, M., W. Guo, Q. Meng, D. M. Stevenson, P. J. Weimer, and D. M. Schaefer. 2013. Changes in rumen bacterial community composition in steers in response to dietary nitrate. Appl. Environ.Biotech. 97:8719-8727. https://doi.org/10.1007/s00253-013-5143-z
  19. Marais, J. P., J. J. Therion, R. I. Mackie, A. Kistner, and C. Dennison. 1988. Effect of nitrate and its reduction products on the growth and activity of the rumen microbialpopulation. Br. J. Nutr. 59: 301-313. https://doi.org/10.1079/BJN19880037
  20. Miller, W. G., G. Wang, T. T. Binnewies, and C. T. Parker. 2008. The complete genome sequence and analysis of the human pathogen Campylobacter lari. Foodborne Pathog. Dis. 5:371-386. https://doi.org/10.1089/fpd.2008.0101
  21. Palmer, K. andM. A. Horn. 2012. Actinobacterial nitrate reducers and proteobacterial denitrifiers are abundant in N2O-metabolizing palsa peat. Appl. Environ. Microbiol. 78:5584-5596. https://doi.org/10.1128/AEM.00810-12
  22. Parkhill, J., B. W. Wren, K. Mungall,J. M. Ketley, C. Churcher, D. Basham, T. Chillingworth, R. M. Davies, T. Feltwell, and S. Holroyd et al. 2000. The genome sequence of the food-borne pathogen Campylobacter jejunireveals hypervariable sequences. Nature 403(6770):665-668. https://doi.org/10.1038/35001088
  23. Patel, R. K. and M. Jain. 2012. NGS QC Toolkit: A toolkit for quality control of next generation sequencing data. PLoS ONE, 7(2):e30619. https://doi.org/10.1371/journal.pone.0030619
  24. Pitta, D. W., W. E. Pinchak, S. E. Dowd, J. Osterstock, V. Gontcharova, E. Youn, K. Dorton, I. Yoon, B. R. Min, J. D. Fulford, T. A. Wickersham, and D. P. Malinowski. 2010. Rumen bacterial diversity dynamics associated with changing from bermudagrass hay to grazed winter wheat diets. Microb.Ecol. 59:511-522. https://doi.org/10.1007/s00248-009-9609-6
  25. Price, M. N., P. S. Dehal, and A. P. Arkin. 2009. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26:1641-1650. https://doi.org/10.1093/molbev/msp077
  26. Prasanna, R., V. Kumar, S. Kumar, A. Kumar Yadav, U. Tripathi, A. Kumar Singh, M. C. Jain, P. Gupta, P. K. Singh, and N. Sethunathan. 2002. Methane production in rice soil is inhibited by cyanobacteria. Microbiol.Res. 157:1-6. https://doi.org/10.1078/0944-5013-00124
  27. Sar, C., B. Mwenya, B. Santoso, K. Takaura, R. Morikawa, N. Isogai, Y. Asakura, Y. Toride, and J. Takahashi. 2005. Effect of Escherichia coli wild type or its derivative with high nitrite reductase activity on in vitro ruminal methanogenesis and nitrate/nitrite reduction. J. Anim. Sci. 83:644-652. https://doi.org/10.2527/2005.833644x
  28. Slyter, L. L. and P. A. Putnam. 1967. In vivo vs in vitro continuous culture of ruminal microbial populations.J. Anim. Sci. 26: 1421-1427. https://doi.org/10.2527/jas1967.2661421x
  29. Stewart, C. S., H. J. Flint, and M. P. Bryant. 1997. The rumen bacteria. In:The Rumen Microbial Ecosystem, 2nd ed.,By (P. N. Hobson, and C. S. Stewart). Blackie Academic and Professional, London, UK. 10-72.
  30. Stevenson, D. M. and P. J. Weimer. 2007. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Environ.Biotech.75:165-174. https://doi.org/10.1007/s00253-006-0802-y
  31. Thoetkiattikul, H., W. Mhuantong, T. Laothanachareon, S. Tangphatsornruang, V. Pattarajinda, L. Eurwilaichitr, and V. Champreda. 2013. Comparative analysis of microbial profiles in cow rumen fed with different dietary fiber by tagged 16S rRNA gene pyrosequencing. Curr. Microbiol. 67:130-137. https://doi.org/10.1007/s00284-013-0336-3
  32. Van Zijderveld, S. M., W. J. J. Gerrits, J. A. Apajalahti, J. R. Newbold, J. Dijkstra, R. A. Leng, and H. B. Perdok. 2010. Nitrate and sulfate: Effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J. Dairy Sci. 93:5856-5866. https://doi.org/10.3168/jds.2010-3281
  33. Weakley, D. G. and F. N. Owens. 1983. Influence of ammonia concentration on microbial protein synthesis in the rumen. Oklahoma Agr. Exp. Sta. MP-114, 39.
  34. Zened, A., S. Combes, L. Cauquil, J. Mariette, C. Klopp, O. Bouchez, M. A. Troegeler, and F. Enjalbert. 2013. Microbial ecology of the rumen evaluated by 454 GS FLX pyrosequencing is affected by starch and oil supplementation of diets. FEMS Microbiol. Ecol. 83:504-514. https://doi.org/10.1111/1574-6941.12011
  35. Zhou, Z., Q. Meng, and Z. Yu. 2011. Effects of methanogenic inhibitors on methane production and abundances of methanogens and cellulolytic bacteria in in vitro ruminal cultures. Appl. Environ. Microbiol. 77:2634-2639. https://doi.org/10.1128/AEM.02779-10
  36. Zhou, Z., Z. Yu, andQ. Meng. 2012. Effects of nitrate on methane production, fermentation, and microbial populations in in vitro ruminal cultures. Bioresour. Technol.103:173-179. https://doi.org/10.1016/j.biortech.2011.10.013

Cited by

  1. Characterization of the microbial communities along the gastrointestinal tract of sheep by 454 pyrosequencing analysis vol.30, pp.1, 2016, https://doi.org/10.5713/ajas.16.0166
  2. Insights on Alterations to the Rumen Ecosystem by Nitrate and Nitrocompounds vol.7, pp.1664-302X, 2016, https://doi.org/10.3389/fmicb.2016.00228
  3. Effect of urea-supplemented diets on the ruminal bacterial and archaeal community composition of finishing bulls vol.101, pp.15, 2017, https://doi.org/10.1007/s00253-017-8323-4
  4. Impact of levels of total digestible nutrients on microbiome, enzyme profile and degradation of feeds in buffalo rumen vol.12, pp.2, 2017, https://doi.org/10.1371/journal.pone.0172051
  5. Biofilm compartmentalisation of the rumen microbiome: modification of fermentation and degradation of dietary toxins vol.57, pp.11, 2017, https://doi.org/10.1071/AN17382
  6. Assessment of Ruminal Bacterial and Archaeal Community Structure in Yak (Bos grunniens) vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.00179
  7. The Structural and Functional Capacity of Ruminal and Cecal Microbiota in Growing Cattle Was Unaffected by Dietary Supplementation of Linseed Oil and Nitrate vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.00937
  8. Feeding a High Concentration Diet Induces Unhealthy Alterations in the Composition and Metabolism of Ruminal Microbiota and Host Response in a Goat Model vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.00138
  9. Substrate-Induced Response in Biogas Process Performance and Microbial Community Relates Back to Inoculum Source vol.6, pp.3, 2018, https://doi.org/10.3390/microorganisms6030080
  10. Nitrate decreases ruminal methane production with slight changes to ruminal methanogen composition of nitrate-adapted steers vol.18, pp.1, 2018, https://doi.org/10.1186/s12866-018-1164-1
  11. Effects of nitrate supplementation and forage level on gas production, nitrogen balance and dry-matter degradation in sheep vol.59, pp.3, 2019, https://doi.org/10.1071/AN17759
  12. Studies on bacterial community composition are affected by the time and storage method of the rumen content vol.12, pp.4, 2015, https://doi.org/10.1371/journal.pone.0176701
  13. Impact of winter enclosures on the gut bacterial microbiota of red deer in the Bavarian Forest National Park vol.2019, pp.1, 2015, https://doi.org/10.2981/wlb.00503
  14. Long-Term Encapsulated Nitrate Supplementation Modulates Rumen Microbial Diversity and Rumen Fermentation to Reduce Methane Emission in Grazing Steers vol.10, pp.None, 2015, https://doi.org/10.3389/fmicb.2019.00614
  15. Dietary Energy Level Promotes Rumen Microbial Protein Synthesis by Improving the Energy Productivity of the Ruminal Microbiome vol.10, pp.None, 2015, https://doi.org/10.3389/fmicb.2019.00847
  16. Dietary Bioactive Lipid Compounds Rich in Menthol Alter Interactions Among Members of Ruminal Microbiota in Sheep vol.10, pp.None, 2015, https://doi.org/10.3389/fmicb.2019.02038
  17. Immediate Effects of Ammonia Shock on Transcription and Composition of a Biogas Reactor Microbiome vol.10, pp.None, 2015, https://doi.org/10.3389/fmicb.2019.02064
  18. A meta-analysis of the bovine gastrointestinal tract microbiota vol.95, pp.6, 2015, https://doi.org/10.1093/femsec/fiz072
  19. Bacterial colonisation of reeds and cottonseed hulls in the rumen of Tarim red deer (Cervus elaphus yarkandensis) vol.112, pp.9, 2019, https://doi.org/10.1007/s10482-019-01260-0
  20. Encapsulated nitrate replacing soybean meal changes in vitro ruminal fermentation and methane production in diets differing in concentrate to forage ratio vol.90, pp.10, 2019, https://doi.org/10.1111/asj.13251
  21. Different dietary protein sources in low protein diets regulate colonic microbiota and barrier function in a piglet model vol.10, pp.10, 2015, https://doi.org/10.1039/c9fo01154d
  22. Rumen bacterial community responses to DPA, EPA and DHA in cattle and sheep: A comparative in vitro study vol.9, pp.1, 2015, https://doi.org/10.1038/s41598-019-48294-y
  23. Age-based dynamic changes of phylogenetic composition and interaction networks of health pig gut microbiome feeding in a uniformed condition vol.15, pp.None, 2015, https://doi.org/10.1186/s12917-019-1918-5
  24. In vitro gas production and rumen fermentation profile of fresh and ensiled genetically modified high–metabolizable energy ryegrass vol.103, pp.3, 2015, https://doi.org/10.3168/jds.2019-16781
  25. Inhibition of methanogenesis by nitrate, with or without defaunation, in continuous culture vol.103, pp.8, 2015, https://doi.org/10.3168/jds.2020-18325
  26. Brisket Disease Is Associated with Lower Volatile Fatty Acid Production and Altered Rumen Microbiome in Holstein Heifers vol.10, pp.9, 2020, https://doi.org/10.3390/ani10091712
  27. Insights into Metatranscriptome, and CAZymes of Buffalo Rumen Supplemented with Blend of Essential Oils vol.60, pp.4, 2015, https://doi.org/10.1007/s12088-020-00894-3
  28. Evidence for the amnion-fetal gut-microbial axis in late gestation beef calves 1 vol.4, pp.suppl1, 2015, https://doi.org/10.1093/tas/txaa138
  29. Active Rumen Bacterial and Protozoal Communities Revealed by RNA-Based Amplicon Sequencing on Dairy Cows Fed Different Diets at Three Physiological Stages vol.9, pp.4, 2015, https://doi.org/10.3390/microorganisms9040754
  30. Late Gestation Maternal Feed Restriction Decreases Microbial Diversity of the Placenta While Mineral Supplementation Improves Richness of the Fetal Gut Microbiome in Cattle vol.11, pp.8, 2021, https://doi.org/10.3390/ani11082219
  31. Effect of Methionine Supplementation on Rumen Microbiota, Fermentation, and Amino Acid Metabolism in In Vitro Cultures Containing Nitrate vol.9, pp.8, 2015, https://doi.org/10.3390/microorganisms9081717
  32. The materno-placental microbiome of gravid beef cows under moderate feed intake restriction vol.5, pp.suppl1, 2015, https://doi.org/10.1093/tas/txab172