References
- Andreadakis, A.D. 1992. Anaerobic digestion of piggery wastes. Wat. Sci. Technol. 25:9-16.
- Angelidaki, I., S.P. Petersein, and B.K. Ahring. 1990. Effects of lipids on thermophilic anaerobic digestion and reduction of lipid inhibition upon addition of bentonite. Appl. Microbiol. Biotechnol. 33:469-472.
- Angelidaki, I. and B.K. Ahring. 2000. Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure. Water Sci. Technol. 41:189-194.
- APHA. 1998. Standard methods for the examination of water and wastewater. (20th ed.) American Public Health Association, Washington, DC, USA.
- Ayers, W.A. 1959. Phosphorolysis and synthesis of cell by cell extracts from Ruminococcus flavefaciens. J. Biol. Chem. 234:2819-2822.
- Beuvink, J.M., S.F. Spoelstra, and R.J. Hogendrop. 1992. An automated method of measuring the time course of gas production of feedstuffs incubated with buffered rumen fluid. Neth. J. Agri. Sci., 40:401-407.
- Bonmati A., X. Flotats, L. Mateu, and E. Campos. 2001. Study of thermal hydrolysis as a pretreatment to mesophilic anaerobic digestion of pig slurry. Water Sci. Technol. 44:109-116.
- Bryant, M.P., N. Small, C. Bouma, and I.M. Robinson. 1958. Studies on the composition of the ruminal flora and fauna of young calves. J. Dairy Sci. 41:1747-1767. https://doi.org/10.3168/jds.S0022-0302(58)91160-3
- Canh, T.T., M.W. Verstegen, A.J. Aarnink, and J.W. Schram. 1997. Influence of dietary factors on nitrogen partitioning and composition of urine and feces of fattening pigs. J. Anim. Sci. 75:700-706. https://doi.org/10.2527/1997.753700x
- Clemens, J., M. Trimborn, P. Weiland, and B. Amon. 2006. Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry. Agri. Ecosyst. Environ. 112:171-177. https://doi.org/10.1016/j.agee.2005.08.016
- Danish Energy Agency. 1992. Update on centralized biogas plants.
- Dehority, B.A. 1963. Isolation and characterization of several cellulolytic bacteria from in vitro rumen fermentations. J. Dairy Sci. 46:217-222. https://doi.org/10.3168/jds.S0022-0302(63)89009-8
- Dehority, B.A. 2003. Rumen microbiology. Nottingham University Press, Nottingham, UK.
- Duncan, D.B. 1955. Multiple range and multiple F tests. Biometrics. 11:1. https://doi.org/10.2307/3001478
- Gerardi, M.H. 2003. The microbiology of anaerobic digesters. John Wiley & Sons, Inc., New York, USA.
- Gijen, H.J., K.B. Zwart, P.T. van Gelder, and G.D. Vogels. 1986. Continuous cultivation of rumen microorganisms, a system with possible application to the anaerobic degradation of lignocellulosic waste materials. Appl. Micro. Biotech. 25:155-162. https://doi.org/10.1007/BF00938940
- Hansen, T.L, J.E. Schmidt, I. Angelidaki, E. Marca, J. Cour Jansen, H. Mosboek, and T.H. Christensen. 2004. Method for determination of methane potentials of solid organic waste. Waste Manage. 24:393-400. https://doi.org/10.1016/j.wasman.2003.09.009
- Hashimoto, A.G. 1984. Methane from swine manure: effect of temperature and influent substrate concentration on kinetic parameter (k). Ag. Wastes, 9:299-308. https://doi.org/10.1016/0141-4607(84)90088-X
- Hill, D.T. and J.P. Bolte. 1984. Characteristics of screenedflushed swine waste as a methane substrate. 1984 ASAE Conference, June 24-27, 1984. University of Tennessee, Knoxville, TN. ASAE. 1-20.
- Iannotti, E.L., J.H. Porter, J.R. Fischer, and D.M. Sievers. 1979. Changes in swine manure during anaerobic digestion. Developments in Industrial Microbiology, 209: 519-529.
- Kim, S.H., C.H. Kim, and Y.M. Yoon. 2011. Bioenergy and material production potential by life cycle assessment in swine waste biomass. Korean J. Soil Sci. Fert. 44(6): 1245-1251. https://doi.org/10.7745/KJSSF.2011.44.6.1245
- Kim, J.A., Y.M. Yoon, and C.H. Kim. 2012. Effects of supplementation of mixed methanogens and rumen cellulolytic bacteria on biochemical methane potential. Korean J. Soil Sci. Fert. 45(4): 515-523. https://doi.org/10.7745/KJSSF.2012.45.4.515
- Lawrence, A.W. and P.L. McCarty. 1967. Kinetics of methane fermentation in anaerobic waste treatment. Technical report No. 75. Stanford, Califonia, USA.
- Leslie Grady, C.P., G.T. Daigger, and H.C. Lim. 1999. Biological Wastewater Treatment (2nd ed). p. 599-604. Marcel Dekker, Inc., NY, USA.
- Lettinga, G. 2001. Digestion and degradation, air for life. Water Sci. Technol. 44: 157-176.
- Muller, H.W. and W. Trosch, 1986. Screening of white-rot fungi for biological pretreatment of wheat straw for biogas production. Appl. Micro. Biotech. 24:180-185. https://doi.org/10.1007/BF00938793
- Odenyo, A.A., R.I. Mackie, and B.A. White. 1994. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: pure-culture studies with cellulose and alkaline peroxide-treated wheat straw. Appl. Environ. Microbiol. 60:3697-3703.
- Owen, W.P., D.C. Stuckey, J.B. Healy, L.Y. Young, and P.L. McCarty. 1979. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res. 13:485-492. https://doi.org/10.1016/0043-1354(79)90043-5
- Rymer, C. and D.I. Givens. 2002. Relationships between patterns of rumen fermentation measured in sheep and in situ degradability and the in vitro gas production profile of the diet. Anim. Feed. Sci. Technol. 101:31-44. https://doi.org/10.1016/S0377-8401(02)00215-8
- Safley, L.M., Jr. and P.W. Westerman. 1990. Psychrophilic anaerobic digestion of animal manure: Proposed design methodology. Biol. Wastes. 34:133-148. https://doi.org/10.1016/0269-7483(90)90014-J
- SAS. 1999. Statistical Analysis Systems User's Guide. (8th ed.) SAS Institute Inc. Raleigh, NC, USA.
- Shin, H.S. Y.C. Song, and K.S. Jun. 1992. Pretreatment processes for enhanced anaerobic digestion of food waste. p. 451-454. In F. Cecchi et al. (ed.) Proceedings of international symposium on anaerobic digestion of solid waste. Venice, Italy.
- Speece, R. 1996. Anaerobic biotechnology for industrial wastewaters. p. 29-58. Archae Press, Nashville, TN, USA.
- Stanogias, G., M. Tjandraatmadja, and G.R. Pearce. 1985. Effects of source and level of fibre in pig diets on methane production from pig faeces. Ag. Wastes. 12:37-54. https://doi.org/10.1016/0141-4607(85)90044-7
- Theodorou, M.K., B.A. Williams, M.S. Dhanoa, A.B. McAllan, and J. France. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed. Sci. Technol. 48:185-197. https://doi.org/10.1016/0377-8401(94)90171-6
- Theodorou, M.K., D.R. Daivies, B.B. Nilsen, M.I.G. Lawrence, and A.P.J. Trinci. 1998. Principles of techniques that rely on gas measurement in ruminant nutrition. p.55-63. E.R. Deaville et al. (ed.) In vitro techniques for measuring nutrient supply to ruminants. (Occasional publication, No. 22). British Society of Animal Science, UK.
- Triolo, J.M., S.G. Sommer, H.B. Møller, M.R. Weisbjerg, and X.Y. Jiang. 2011. A new algorithm to characterize biodegradability of biomass during anaerobic digestion: Influence of lignin concnetration on methane production potential. Bioresour. Technol. 102:9395-9402. https://doi.org/10.1016/j.biortech.2011.07.026
- van Lier J.B., A. Tilche, B.K. Ahring, H. Macarie, R. Moletta, M. Dohanyo, L.W. Hulshoff Pol, P. Lens, and W. Werstraete. 2001. New perspectives in anaerobic digestion. Water Sci. Technol. 43:1-18.
- Williams, A., M. Amat-Marco, and M.D. Collins. 1996. Pylogenetic analysis of Butyrivibrio strains reveals three distinct groups of species within the Clostridium subphylm of gram-positive bacteria. Int. J. Syst. Bacteriol. 46:195-199. https://doi.org/10.1099/00207713-46-1-195
- Yoon, Y.M., C.H. Kim, Y.J. Kim, and H.T. Pack. 2009. The economical evaluation of biogas production facility of pig waste. Korean J. Agri. Management Policy. 36(1): 137-157.
Cited by
- The Improvement of Bio-gas Production through the Change of Sludge-Recycle Ratio with Two-Stage Anaerobic Digestion vol.23, pp.6, 2014, https://doi.org/10.5322/JESI.2014.23.6.1061