DOI QR코드

DOI QR Code

Effects of Supplementation of Mixed Methanogens and Rumen Cellulolytic Bacteria on Biochemical Methane Potential with Pig Slurry

양돈슬러리를 이용한 혐기소화에서 미생물 첨가가 메탄발생에 미치는 영향

  • Kim, Ji-Ae (The Graduate School of Bio and Information Technology, Hankyong National University) ;
  • Yoon, Young-Man (Biogas Research Center, Hankyong National University) ;
  • Jeong, Kwang-Hwa (National Institute of Animal Science, RDA) ;
  • Kim, Chang-Hyun (The Graduate School of Bio and Information Technology, Hankyong National University)
  • 김지애 (한경대학교 바이오정보기술대학원) ;
  • 윤영만 (한경대학교 바이오가스연구센터) ;
  • 정광화 (농촌진흥청 국립축산과학원) ;
  • 김창현 (한경대학교 바이오정보기술대학원)
  • Received : 2012.10.17
  • Accepted : 2012.11.20
  • Published : 2012.12.31

Abstract

The study investigated the biochemical methane potential (BMP) assay of pig slurry supplemented with mixed methanogens and cellulolytic bacteria to improve anaerobic digestion for methane production. For the BMP assay, 7 different microbial supplementation groups consisted of the cultures of mixed methanogens (M), Fibrobacter succinogenes (FS), Ruminococcus flavefaciensn (RF), R. albus (RA), RA+FS, M+RA+FS, and control. The cultures were added in the batch reactors with the increasing dose levels of 1% (0.5 mL), 3% (1.5 mL) and 5% (2.5 mL). Incubation for the BMP assay was carried out for 60 days at $38^{\circ}C$ using anaerobic digestate obtained from an anaerobic digester with pig slurry as inoculum. In results, 5% RF and RA+FS increased total biogas up to 8.1 and 8.4%, respectively, compared with that of control (p<0.05). All 5% microbial culture supplements significantly increased methane production up to 12.1~17.9% compared with that of control (p<0.05). Total solid (TS) and volatile solid (VS) digestion efficiencies showed no relationship to the increased supplementation levels of microbial cultures. After incubation, pH values in all treatment groups ranged between 7.527 and 7.657 indicating that methanogensis was not inhibited during the incubation. In conclusion, the results indicated that both hydrolysis and methanogenesis stages for methane production in anaerobic batch reactors were influenced by the supplemented microorganisms due to the chemical characteristics of pig slurry, but only the 5% supplementation level of all microbial culture supplements used in the experiment affected methane production.

본 연구는 메탄생성에 직접적으로 관여하는 혼합 메탄균과 셀롤로스 등의 고분자 물질의 가수분해 반응에 활성이 뛰어난 반추위 내 혐기성 섬유소분해균 중에서 대표적인 Fibrobacter succinogenes, Ruminococcus flavefaciens 및 Ruminococcus albus를 biochemical methane potential (BMP) 시험에 첨가하였을 때 메탄 발생에 미치는 영향을 조사하고자 수행되었다. BMP시험은 멸균증류수를 첨가한 control과 각각의 미생물 배양액을 첨가한 혼합 메탄균 첨가구 (M), F. succinogenes 첨가구 (FS) R. flavefaciens 첨가구 (RF), R. albus 첨가구 (RA) 및 RA+FS 혼합첨가구와 M+RA+FS 혼합 첨가구로 총 7개 처리구로 각 처리구별 3반복으로 진행되었다. 미생물 배양액의 첨가량은 식종액과 양돈슬러리에 1% (0.5 mL), 3% (1.5 mL) 및 5% (2.5 mL) 씩 첨가 하였다. BMP 시험을 위해 60일간 배양이 지속되었고 중온소화를 위해 $38^{\circ}C$의 배양기에서 수행되었다. 실험의 결과 총 바이오가스 발생량은 5% RF와 RA+FS가 대조구에 비하여 8.1 및 8.4%로 가스발생량이 유의적으로 높았다(p<0.05). 메탄발생량은 3% 미생물 배양액 첨가구 중 M+RA+FS를 제외하고 대조구에 비하여 증가시키는 경향을 보였으며, 5% 배양액을 첨가하였을 때는 대조구에 대하여 5%의 M, FS, RF, RA, RA+FS, 및 M+RA+FS RF가 각각 12.1, 12.6, 17.3, 13.7, 17.9 및 14.7%로 메탄가스발생량을 증가시켰다 (p<0.05). TS 및 VS 분해율은 가스발생량과는 관계없이 모든 처리구에서 미생물 배양액의 첨가량이 증가하더라도 차이가 없었다. BMP 종료시 배양액내 pH는 모든 처리구가 7.527~7.657의 범위로 메탄발효에 큰 영향을 주지 않았다. 결론적으로, 본 실험에서는 양돈 슬러리의 성분특성으로 인해 가수분해단계와 메탄생성단계 모두에 첨가한 미생물 배양액이 효과가 있었으나, 5% 첨가수준을 제외하고 낮은 첨가수준에서는 첨가효과가 나타나지는 않았다.

Keywords

References

  1. Andreadakis, A.D. 1992. Anaerobic digestion of piggery wastes. Wat. Sci. Technol. 25:9-16.
  2. Angelidaki, I., S.P. Petersein, and B.K. Ahring. 1990. Effects of lipids on thermophilic anaerobic digestion and reduction of lipid inhibition upon addition of bentonite. Appl. Microbiol. Biotechnol. 33:469-472.
  3. Angelidaki, I. and B.K. Ahring. 2000. Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure. Water Sci. Technol. 41:189-194.
  4. APHA. 1998. Standard methods for the examination of water and wastewater. (20th ed.) American Public Health Association, Washington, DC, USA.
  5. Ayers, W.A. 1959. Phosphorolysis and synthesis of cell by cell extracts from Ruminococcus flavefaciens. J. Biol. Chem. 234:2819-2822.
  6. Beuvink, J.M., S.F. Spoelstra, and R.J. Hogendrop. 1992. An automated method of measuring the time course of gas production of feedstuffs incubated with buffered rumen fluid. Neth. J. Agri. Sci., 40:401-407.
  7. Bonmati A., X. Flotats, L. Mateu, and E. Campos. 2001. Study of thermal hydrolysis as a pretreatment to mesophilic anaerobic digestion of pig slurry. Water Sci. Technol. 44:109-116.
  8. Bryant, M.P., N. Small, C. Bouma, and I.M. Robinson. 1958. Studies on the composition of the ruminal flora and fauna of young calves. J. Dairy Sci. 41:1747-1767. https://doi.org/10.3168/jds.S0022-0302(58)91160-3
  9. Canh, T.T., M.W. Verstegen, A.J. Aarnink, and J.W. Schram. 1997. Influence of dietary factors on nitrogen partitioning and composition of urine and feces of fattening pigs. J. Anim. Sci. 75:700-706. https://doi.org/10.2527/1997.753700x
  10. Clemens, J., M. Trimborn, P. Weiland, and B. Amon. 2006. Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry. Agri. Ecosyst. Environ. 112:171-177. https://doi.org/10.1016/j.agee.2005.08.016
  11. Danish Energy Agency. 1992. Update on centralized biogas plants.
  12. Dehority, B.A. 1963. Isolation and characterization of several cellulolytic bacteria from in vitro rumen fermentations. J. Dairy Sci. 46:217-222. https://doi.org/10.3168/jds.S0022-0302(63)89009-8
  13. Dehority, B.A. 2003. Rumen microbiology. Nottingham University Press, Nottingham, UK.
  14. Duncan, D.B. 1955. Multiple range and multiple F tests. Biometrics. 11:1. https://doi.org/10.2307/3001478
  15. Gerardi, M.H. 2003. The microbiology of anaerobic digesters. John Wiley & Sons, Inc., New York, USA.
  16. Gijen, H.J., K.B. Zwart, P.T. van Gelder, and G.D. Vogels. 1986. Continuous cultivation of rumen microorganisms, a system with possible application to the anaerobic degradation of lignocellulosic waste materials. Appl. Micro. Biotech. 25:155-162. https://doi.org/10.1007/BF00938940
  17. Hansen, T.L, J.E. Schmidt, I. Angelidaki, E. Marca, J. Cour Jansen, H. Mosboek, and T.H. Christensen. 2004. Method for determination of methane potentials of solid organic waste. Waste Manage. 24:393-400. https://doi.org/10.1016/j.wasman.2003.09.009
  18. Hashimoto, A.G. 1984. Methane from swine manure: effect of temperature and influent substrate concentration on kinetic parameter (k). Ag. Wastes, 9:299-308. https://doi.org/10.1016/0141-4607(84)90088-X
  19. Hill, D.T. and J.P. Bolte. 1984. Characteristics of screenedflushed swine waste as a methane substrate. 1984 ASAE Conference, June 24-27, 1984. University of Tennessee, Knoxville, TN. ASAE. 1-20.
  20. Iannotti, E.L., J.H. Porter, J.R. Fischer, and D.M. Sievers. 1979. Changes in swine manure during anaerobic digestion. Developments in Industrial Microbiology, 209: 519-529.
  21. Kim, S.H., C.H. Kim, and Y.M. Yoon. 2011. Bioenergy and material production potential by life cycle assessment in swine waste biomass. Korean J. Soil Sci. Fert. 44(6): 1245-1251. https://doi.org/10.7745/KJSSF.2011.44.6.1245
  22. Kim, J.A., Y.M. Yoon, and C.H. Kim. 2012. Effects of supplementation of mixed methanogens and rumen cellulolytic bacteria on biochemical methane potential. Korean J. Soil Sci. Fert. 45(4): 515-523. https://doi.org/10.7745/KJSSF.2012.45.4.515
  23. Lawrence, A.W. and P.L. McCarty. 1967. Kinetics of methane fermentation in anaerobic waste treatment. Technical report No. 75. Stanford, Califonia, USA.
  24. Leslie Grady, C.P., G.T. Daigger, and H.C. Lim. 1999. Biological Wastewater Treatment (2nd ed). p. 599-604. Marcel Dekker, Inc., NY, USA.
  25. Lettinga, G. 2001. Digestion and degradation, air for life. Water Sci. Technol. 44: 157-176.
  26. Muller, H.W. and W. Trosch, 1986. Screening of white-rot fungi for biological pretreatment of wheat straw for biogas production. Appl. Micro. Biotech. 24:180-185. https://doi.org/10.1007/BF00938793
  27. Odenyo, A.A., R.I. Mackie, and B.A. White. 1994. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: pure-culture studies with cellulose and alkaline peroxide-treated wheat straw. Appl. Environ. Microbiol. 60:3697-3703.
  28. Owen, W.P., D.C. Stuckey, J.B. Healy, L.Y. Young, and P.L. McCarty. 1979. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res. 13:485-492. https://doi.org/10.1016/0043-1354(79)90043-5
  29. Rymer, C. and D.I. Givens. 2002. Relationships between patterns of rumen fermentation measured in sheep and in situ degradability and the in vitro gas production profile of the diet. Anim. Feed. Sci. Technol. 101:31-44. https://doi.org/10.1016/S0377-8401(02)00215-8
  30. Safley, L.M., Jr. and P.W. Westerman. 1990. Psychrophilic anaerobic digestion of animal manure: Proposed design methodology. Biol. Wastes. 34:133-148. https://doi.org/10.1016/0269-7483(90)90014-J
  31. SAS. 1999. Statistical Analysis Systems User's Guide. (8th ed.) SAS Institute Inc. Raleigh, NC, USA.
  32. Shin, H.S. Y.C. Song, and K.S. Jun. 1992. Pretreatment processes for enhanced anaerobic digestion of food waste. p. 451-454. In F. Cecchi et al. (ed.) Proceedings of international symposium on anaerobic digestion of solid waste. Venice, Italy.
  33. Speece, R. 1996. Anaerobic biotechnology for industrial wastewaters. p. 29-58. Archae Press, Nashville, TN, USA.
  34. Stanogias, G., M. Tjandraatmadja, and G.R. Pearce. 1985. Effects of source and level of fibre in pig diets on methane production from pig faeces. Ag. Wastes. 12:37-54. https://doi.org/10.1016/0141-4607(85)90044-7
  35. Theodorou, M.K., B.A. Williams, M.S. Dhanoa, A.B. McAllan, and J. France. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed. Sci. Technol. 48:185-197. https://doi.org/10.1016/0377-8401(94)90171-6
  36. Theodorou, M.K., D.R. Daivies, B.B. Nilsen, M.I.G. Lawrence, and A.P.J. Trinci. 1998. Principles of techniques that rely on gas measurement in ruminant nutrition. p.55-63. E.R. Deaville et al. (ed.) In vitro techniques for measuring nutrient supply to ruminants. (Occasional publication, No. 22). British Society of Animal Science, UK.
  37. Triolo, J.M., S.G. Sommer, H.B. Møller, M.R. Weisbjerg, and X.Y. Jiang. 2011. A new algorithm to characterize biodegradability of biomass during anaerobic digestion: Influence of lignin concnetration on methane production potential. Bioresour. Technol. 102:9395-9402. https://doi.org/10.1016/j.biortech.2011.07.026
  38. van Lier J.B., A. Tilche, B.K. Ahring, H. Macarie, R. Moletta, M. Dohanyo, L.W. Hulshoff Pol, P. Lens, and W. Werstraete. 2001. New perspectives in anaerobic digestion. Water Sci. Technol. 43:1-18.
  39. Williams, A., M. Amat-Marco, and M.D. Collins. 1996. Pylogenetic analysis of Butyrivibrio strains reveals three distinct groups of species within the Clostridium subphylm of gram-positive bacteria. Int. J. Syst. Bacteriol. 46:195-199. https://doi.org/10.1099/00207713-46-1-195
  40. Yoon, Y.M., C.H. Kim, Y.J. Kim, and H.T. Pack. 2009. The economical evaluation of biogas production facility of pig waste. Korean J. Agri. Management Policy. 36(1): 137-157.

Cited by

  1. The Improvement of Bio-gas Production through the Change of Sludge-Recycle Ratio with Two-Stage Anaerobic Digestion vol.23, pp.6, 2014, https://doi.org/10.5322/JESI.2014.23.6.1061