• Title/Summary/Keyword: Fiber-reinforced Composite

Search Result 1,883, Processing Time 0.025 seconds

Prediction of Wetting and Interfacial Property of CNT Reinforced Epoxy on CF Tow Using Electrical Resistance Method (전기저항 평가법을 이용한 CNT 함유 에폭시의 탄소섬유내 젖음성 및 계면특성 예측 연구)

  • Kwon, Dong-Jun;Choi, Jin-Yeong;Shin, Pyeong-Su;Lee, Hyung-Ik;Lee, Min-Gyeong;Park, Jong-Kyoo;Park, Joung-Man
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.232-238
    • /
    • 2015
  • As a new method to predict the degree of dispersion in carbon nanocomposites, the electrical resistance (ER) method has been evaluated. After CNT epoxy resin was dropped on CF tow, the change in electrical resistance of carbon fiber tow was measured to evaluate dispersion condition in CNT epoxy resin. Good dispersion of CNTs in carbon nanocomposite exhibited low change in ER due to wetted resin penetrated on CF tow. However, because CNT network was formed among CFs, non-uniform dispersion occurred due to nanoparticle filtering effect by CF tow. The change in ER for poor dispersion exhibited large ER signal change. The change in ER was used for the dispersion evaluation of CNT epoxy resin. Correlation between interlaminar shear strength (ILSS) and dispersion condition by ER method was established. Good CNT dispersion in nanocomposites led to good interfacial properties of fiberreinforced nanocomposites.

Application of Laser Surface Treatment Technique for Adhesive Bonding of Carbon Fiber Reinforced Composites (탄소복합재 접착공정을 위한 CFRP의 레이저 표면처리 기법의 적용)

  • Hwang, Mun-Young;Kang, Lae-Hyong;Huh, Mongyoung
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.371-376
    • /
    • 2020
  • The adhesive strength can be improved through surface treatment. The most common method is to improve physical bonding by varying the surface conditions. This study presents the effect of laser surface treatment on the adhesive strength of CFRP. The surface roughness was patterned using a 1064 nm laser. The effects of the number of laser shots and the direction and length of the pattern on the adhesion of the CFRP/CFRP single joint were investigated through tensile tests. Tests according to ASTM D5868 were performed, and the bonding mechanism was determined by analyzing the damaged surface after a fracture. The optimized number of the laser shots and the optimized depth of the roughness should be required to increase the bonding strength on the CFRP surface. When considering the shear stress in the tensile direction, the roughness pattern in the direction of 45° that increases the length of the fracture path in the adhesive layer resulted in an increase of the adhesive strength. The surface treatment of the bonding surface using a laser is a suitable method to acquire a mechanical bonding mechanism and improve the bonding strength of the CFRP bonding joint. The study on the optimized laser process parameters is required for utilizing the benefits of laser surface processing.

A Review of Structural Batteries with Carbon Fibers (탄소섬유를 활용한 구조용 배터리 연구 동향)

  • Kwon, Dong-Jun;Nam, Sang Yong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.361-370
    • /
    • 2021
  • Carbon fiber reinforced polymer (CFRP) is one of the composite materials, which has a unique property that is lightweight but strong. The CFRPs are widely used in various industries where their unique characteristics are required. In particular, electric and unmanned aerial vehicles critically need lightweight parts and bodies with sufficient mechanical strengths. Vehicles using the battery as a power source should simultaneously meet two requirements that the battery has to be safely protected. The vehicle should be light of increasing the mileage. The CFRP has considered as the one that satisfies the requirements and is widely used as battery housing and other vehicle parts. On the other hand, in the battery area, carbon fibers are intensively tested as battery components such as electrodes and/or current collectors. Furthermore, using carbon fibers as both structure reinforcements and battery components to build a structural battery is intensively investigated in Sweden and the USA. This mini-review encompasses recent research trends that cover the classification of structural batteries in terms of functionality of carbon fibers and issues and efforts in the battery and discusses the prospect of structural batteries.

Conceptual Design of the Three Unit Fixed Partial Denture with Glass Fiber Reinforced Hybrid Composites (Glass fiber 강화 복합레진을 사용한 3본 고정성 국소의치의 개념 설계 연구)

  • Na, Kyoung-Hee;Lee, Kyu-Bok;Jo, Kwang-Hun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.18 no.3
    • /
    • pp.145-155
    • /
    • 2002
  • The results of the present feasibility study are summarized as follows, 1. The three unit bridge of knitted material and UD fibre reinforcement has both the rigidity and the strength against a vertical occlusal load of 75N. 2. Stress concentration at the junctional area between the bridge and the abutments, i.e. between the pontic and the knitted caps was observed. In the case of the bridge with reinforcement straps, it was partly shown that the concentration problem could be improved by simply increasing the fillet size at the area. Further refining in the surface of the junctional area will be needed to ensure a further improvement in the stress distribution. This will require some trade off in the level of the stress and the available space. A parametric study will help to decide the appropriate size of the fillet. 3. Design refinement is a must to improve the stress distribution and realize the most favourable shape in terms of fabrication. The current straight bar with a constant cross section area can be redesigned to a tapered shape. The curve from the dental arch should also be placed on the pontic design. In accordance with design refinement, the resistance of the bridge frame to other load cases should be evaluated. 4. Although not included in the present feasibility study, it is estimated that bridges of the anterior teeth can be made strong enough with the knitted material without further reinforcement using unidirectional materials. In this regard, a feasibility study on design concepts and stress analysis for 3, 4, 5 unit bridge is suggested. 5. Two types of bridge were analysed in terms of fatigue. The safe life design concept, i.e. fatigue design concept, looks reasonable for the bridge where if cracks should form and propagate there is virtually nothing a dentist to do. The bridge must be designed so that no crack will be initiated during the life span. In the case of crowns, however, if constructed with composite resin with knitted materials, it might be possible to repair them, which in general is impossible for crowns of PFM or of metal. Therefore for composite resin crowns, a damage tolerance design concept can be applied and reasonably higher operational stresses can be allowed. In this case, of course, a periodic inspection program should be established in parallel. 6. Parts of future works in terms of structural viewpoint which need to be addressed are summarized as the following: 1) To develop processing technology to accommodate design concepts; 2) More realistic modelling of the bridge and analysis-geometry and loading condition. Thickness variation in the knitted material, taper in the pontic, design for anterior tooth bridge, the effect of combined loads, etc, will need to be included; 3) To develop appropriate design concepts and design goals for the fibre composite FPD aiming at taking the best advantage of knitted materials, including the damage tolerance design concept; 4) To develop testing method and perform test such as static ultimate load test, fatigue test, repair test, etc, as necessary.

The effect of reinforcing methods on fracture strength of composite inlay bridge (강화재의 사용 방법이 복합 레진 인레이 브릿지의 파괴 강도에 미치는 영향)

  • Byun, Chang-Won;Park, Sang-Hyuk;Sang-Jin, Park;Choi, Kyoung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.2
    • /
    • pp.111-120
    • /
    • 2007
  • The purpose of this study is to evaluate the effects of surface treatment and composition of reinforcement material on fracture strength of fiber reinforced composite inlay bridges. The materials used for this study were I-beam, U-beam TESCERA ATL system and ONE STEP(Bisco, IL, USA). Two kinds of surface treatments were used; the silane and the sandblast. The specimens were divided into 11 groups through the composition of reinforcing materials and the surface treatments. On the dentiform, supposing the missing of Maxillary second pre-molar and indirect composite inlay bridge cavities on adjacent first pre-molar disto-occlusal cavity, first molar mesio-occlusal cavity was prepared with conventional high-speed inlay bur. The reinforcing materials were placed on the proximal box space and build up the composite inlay bridge consequently. After the curing, specimen was set on the testing die with ZPC. Flexural force was applied with universal testing machine (EZ-tester; Shimadzu, Japan). at a cross-head speed of 1 mm/min until initial crack occurred. The data was analyzed using one-way ANOVA/Scheffes post-hoc test at 95% significance level. Groups using I-beam showed the highest fracture strengths (p<0.05) and there were no significant differences between each surface treatment (p>0.05) Most of the specimens in groups that used reinforcing material showed delamination. 1. The use of I-beam represented highest fracture strengths (p<0.05) 2. In groups only using silane as a surface treatment showed highest fracture strength, but there were no significant differences between other surface treatments (p>0.05). 3. The reinforcing materials affect the fracture strength and pattern of composites inlay bridge. 4 The holes at the U-beam did not increase the fracture strength of composites inlay bridge.

EVALUATION OF RADIOPACITY AND DISCRIMINABILITY OF VARIOUS FIBER REINFORCED COMPOSITE POSTS (수종의 섬유 강화 레진 포스트의 방사선 불투과도와 식별도 평가)

  • Lee, Eun-Hye;Choi, Hang-Moon;Park, Se-Hee;Kim, Jin-Woo;Cho, Kyung-Mo
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.3
    • /
    • pp.188-197
    • /
    • 2010
  • The purpose of this study was to compare radiopacity and radiographic discriminability of various FRC-Posts. Six FRC-Posts were investigated ; 1) FRC Postec Plus (Ivoclar Vivadent AG, Schaan, Liechtenstein), 2) Snowlight (Carbotech, Lewis center, OH, USA), 3) Dentin Post (Komet Brasseler, Lamgo, Germany), 4) Rely-X Fiber Post (3M ESPE, St.paul, MN, USA), 5) D.T.-Light Post (BISCO, Schaumburg, IL,USA), 6) Luxapost (DMG, Hamburg, Germany) The radiographs of each post with a reference 1 mm / 2 mm aluminum step-wedge was taken using digital sensor. The optical density were calculated by gray value of $10{\times}10$ pixel and compared in mm Al equivalent at five points. Six maxillary incisors of similar radiopacity were used. Radiographs of posts in Mx. incisors of lingual side of dry mandible were taken. We showed radiographs and asked the questionnaire to 3 radiologists, 3 endodontists, 3 general practitioners. The questionnaire was comprised of choices of the highest, lowest radiopaque individual post and the choices of best discriminable post at apical, coronal area. The following results were obtained. 1. Each post system showed various radiopacity. 2. There was change of discriminability between each post and simulated specimens regardless of examiner. Although each post showed various radiopacity, the difference of radiopacity did not affect on discriminability.

Behavior of Hybrid Stud under Compressive Load (복합스터드의 압축 좌굴 거동)

  • Lee, Sang Sup;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.609-619
    • /
    • 2004
  • An investigation was conducted on the activities around Europe in order to solve the problem of the thermal bridging of steel studs, which had caused a significant disadvantage. This study included the following: diminishing the contact area between the studs and the sheathing, lengthening the heat transfer route, replacing the steel web with a less conductive material, and placing foam insulation in locations where the thermal shorts are most critical. Although energy efficiency is usually the focus of such foreign cases because their stud application is mostly limited to low-rise residential buildings, both structural and thermal performance are taken into consideration in this study because these target middle-story buildings. A hybrid stud composed of steel and polymer was also developed. This hybrid stud, which is 150 SL in size, is made of a galvanized steel sheet (SGC58) and a glass fiber reinforced polymer (GFRP) withepoxy bonding. A total of 32 specimens were manufactured. Its parameters comprise two types of connection detail,s: the thickness of steel (1.0mm and 1.2mm) and of the GFRP (4mm-4ply and 6mm-6ply), and the ratio of the length to the depth (L/D = 3, 6, 9, 12). Steel stud specimens with the same conditions were compared to the hybrid stud. The test revealed that in the case of the steel specimen with a thickness of 1.0mm, the maximum load of hybrid studs increased an average of 1.62 times comparedto that of the steel stud. In the case of the steel specimen with a thickness of 1.2mm, on the other hand, the average increase was 1.46times. All specimens showed full composite action until the collapse.

Tensile Behavior of Highly Ductile Cementitious Composites Using Normal Sand as Fine Aggregate (일반모래를 잔골재로 사용한 고연성 시멘트 복합체의 인장거동)

  • Lee, Bang Yeon;Kang, Su-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.178-184
    • /
    • 2017
  • This study was aimed to investigate the tensile behaviors of PE(Polyethylene) fiber-reinforced highly ductile cementitious composites with different combinations of micro silica sand and normal sand(river sand) with maximum particle size of 4.75 mm. Flow test result indicated the increase of flowability with higher replacement ratio of river sand. There was no noticeable difference in the mean compressive strength with different replacement ratio of river sand, but the variation in the compressive strength increased as higher amount of river sand was adopted for the replacement. The difference in the uniaxial tensile strength was negligible, but the tensile strain capacity was significantly influenced by the replacement ratio of river sand. It is thought that increased density of multiple cracks induced improved tensile strain capacity when higher percentage of river sand was adopted for fine aggregate. The deviation in the strain capacity increased as the replacement ratio of river sand was higher, as in the compressive strength. This study presented the feasibility of using normal sand instead of micro silica sand for highly ductile cementitious composites with equivalent or better uniaxial tensile performance, even though it might increase the deviation in the performance.

Tooth preparation design of dental laminate veneer: a review article (라미네이트 치아형성 디자인에 관한 문헌고찰)

  • Jo, Eun-Hye;Ko, Kyung-Ho;Park, Chan-Jin;Cho, Lee-Ra;Huh, Yoon-Hyuk
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.3
    • /
    • pp.149-157
    • /
    • 2016
  • Tooth preparation design is essential for successful laminate veneer treatment. Preservative tooth preparation limited on enamel, supra-margin advantageous for plaque control, and maintaining contact points known as a standard concept. However, the tooth preparation design has been the controversial issue. In biomechanical considerations, the incisal coverage should be decided on esthetic needs and necessity for the anterior guidance reconstruction. In occasion for sufficient enamel thickness, preparation can prolong to the palatal side but not recommended at palatal concavity. Elongation to contact point is selective option according to the cases. If an old resin restoration located at contact area, laminate veneer should cover over half area of that after surface treatment. The laminate veneer can be also selected at a partially discolored tooth root canal therapy (RCT) and at this occasion, the fiber-reinforced composite (FRC) posts are recommended.

Effect of Anodic Oxidation of H2SO4/HNO3 Ratio for Improving Interfacial Adhesion between Carbon Fibers and Epoxy Matrix Resins (탄소섬유와 에폭시 기지의 계면강도 증가를 위한 황산/질산 양극산화에 관한 영향)

  • Moon, Cheol-Whan;Jung, Gun;Im, Seung-Soon;Nah, Changwoon;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.61-65
    • /
    • 2013
  • In this work, the anodic oxidation of carbon fibers was carried out to enhance the mechanical interfacial properties of carbon fibers-reinforced epoxy matrix composites. The surface characteristics of the carbon fibers were studied by FTIR, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Also, the mechanical interfacial properties of the composites were studied with interlaminar shear strength (ILSS), critical stress intensity factor ($K_{IC}$), and critical strain energy release rate ($G_{IC}$). The anodic oxidation led to a significant change in the surface characteristics of the carbon fibers. The anodic oxidation of carbon fiber improved the mechanical interfacial properties, such as ILSS, $K_{IC}$, and $G_{IC}$ of the composites. The mechanical interfacial properties of the composites anodized at 20% sulfuric/nitric (3/1) were the highest values among the anodized carbon fibers. These results were attributed to the increase of the degree of adhesion at interfaces between the carbon fibers and the matrix resins in the composite systems.