• Title/Summary/Keyword: Fiber exposure

Search Result 268, Processing Time 0.025 seconds

Assesment of Chemical Resistance of Geomembranes by UV Exposure (지오멤브레인의 옥외노출시험에 의한 화학저항성 평가)

  • Jeon, Han-Yong;Jung, Gu;Choi, Jun-Dong;Park, Jin-Hyuk;Cho, Sung-Ho
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.424-427
    • /
    • 2001
  • 최근에 지오멤브레인, 지오텍스타일 등의 토목합성재료들이 각종 토목공사에 다양한 용도로 사용되고 있고, 그 사용량이 증가함에 따라 이들 재료들의 각종 성능에 대한 평가가 요구되고 있다. 특히 다양한 원료로 제조된 섬유 고분자 재료들을 적용시킨 현장 시스템의 경우 주변환경에 대한 장기 안정성이 요구되며, 주변환경에 대한 안정성은 제조에 이용되는 고분자의 화학조성에 기인한다. (중략)

  • PDF

SYNTHESIS AND APPLICATION OF NEW SPIN PROBES

  • Kim, S.D.;Freeman, H.S.;Mcgregor, R.
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1990.06b
    • /
    • pp.67-67
    • /
    • 1990
  • Three non-ionic and two anioinic spin probes, differing in size and substituent, were synthesized. Their mobility in dried nylon 6 film was investicated by the spin probe technique using electron spin resonance spectrometer. When the size of a spin probe was large and the interaction between the probe molecules and polymer chains existed, the mobility of spin probes decreased. From Arrhenius plots of rotational correlation time, one discontinuity point ($T_d$) was determined. The activation energies for rotation below and above $T_d$ were discussed in terms of the mode of probe rotation. Three spin probes could be viewed as azo dyes having a built-in nitroxide radical. Photolysis of them in dimethylformamide and in nylon 6 film was performed by exposure to 254 nm UV light in the presence of air. It was found that dyes having a built-in nitroxide radical showed better photostability than dyes derived from ${\bata}-naphthol$..

  • PDF

Cellulose-based carbon fibers prepared using electron-beam stabilization

  • Kim, Min Il;Park, Mi-Seon;Lee, Young-Seak
    • Carbon letters
    • /
    • v.18
    • /
    • pp.56-61
    • /
    • 2016
  • Cellulose fibers were stabilized by treatment with an electron-beam (E-beam). The properties of the stabilized fibers were analyzed by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The E-beam-stabilized cellulose fibers were carbonized in N2 gas at 800℃ for 1 h, and their carbonization yields were measured. The structure of the cellulose fibers was determined to have changed to hemicellulose and cross-linked cellulose as a result of the E-beam stabilization. The hemicellulose decreased the initial decomposition temperature, and the cross-linked bonds increased the carbonization yield of the cellulose fibers. Increasing the absorbed E-beam dose to 1500 kGy increased the carbonization yield of the cellulose-based carbon fiber by 27.5% upon exposure compared to untreated cellulose fibers.

Phage Litmus: Biomimetic Virus-Based Colorimetric Sensors for Explosive Detection

  • O, Jin-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.90.1-90.1
    • /
    • 2013
  • Nature utilizes various of the colorization process. Some species of birds can express their mood of tempers by changing their collagen structures on skin. For example, turkey can change their skin color by expansion of the collagen structures, which are associated with the distinct color changes. Here, we developed bioinspired virus-based colorimetric sensors which can be genetically tuned for target molecule. Using M 13 bacteriophage, we fabricated responsive self-assembled color matrices composed of quasi-ordered fiber bundle structures. These virus matrices can exhibit color change by stimuli through fiber bundle structure modulation. Upon exposure of volatile organic compounds, the resulting multi-colored matrices exhibited distinct color changes with different ratios that can be recognized by the naked eyes. Using the directed evolutionary approaches, we genetically engineered the virus matrix to incorporate binding motif for explosive detection (i.e., trinitrotoluene (TNT)). Through utilizing a common handheld device (i.e., iPhone), we could distinguish TNT molecules down to 20 ppb in a selective manner. Our novel biomimetic virus colorimetric sensor can overcome current limitation for low response selectivity.

  • PDF

Tunable Er$^{3+}$ dopsd Fier DFB Laser (파장 가변 어븀 첨가 광섬유 DFB 레이저)

  • Yoon, Hong;Cho, Kyu-Man;Lee, Sang-Bae;Kim, Sang-Hyuk;Choi, Sang-Sam
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.6
    • /
    • pp.429-433
    • /
    • 2000
  • A study of the tunable fiber DFB laser using PZT-stretcher is presented. The device has an laser ocsillator by using a fiber Bragg grating at 1559.4 nm written directly into a 3-cm long $Er^{3+}$ doped fiber. Post UV-exposure method to provide the necessary phase shift is used for a single mode operation. The device shows the single mode operation of $230\muW$ output power and has a narrow linewidth of 35 kHz. The lasing wavelength of the laser can be tuned in a range of 3 nm by stretching the grating.rating.

  • PDF

Radiation Effects of Fiber Bragg Gratings on the High Temperature Annealing Condition (광섬유 브래그 격자의 고온 어닐링 조건에 따른 방사선 영향)

  • Kim, Jong-Yeol;Lee, Nam-Ho;Jung, Hyun-Kyu;Im, Don-Sun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.785-787
    • /
    • 2016
  • In this study, we studied the gamma-radiation effect of fiber Bragg gratings on the high temperature annealing condition. The fiber Bragg gratings were exposed to gamma-radiation up to a dose of 30.8 kGy at the dose rate of 115 Gy/min. According to the experimental data and analysis results, the gratings that were stabilized at different temperatures have clearly shown that exposure to higher temperatures increases their radiation sensitivity.

  • PDF

Mock-Up Test for the Fire Resistance Analysis of High Strength RC Beam and Slab Using the Polylon Fiber (폴리론 화이버를 혼입한 고강도 RC 보 및 슬래브의 내화특성 분석을 위한 Mock-Up 실험)

  • Son, Ho Jung;Hwang, Dong Gyu;Hann, Chang Pyung;Han, Min Cheol;Yang, Seong Hwan;Han, Cheon Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.93-96
    • /
    • 2009
  • The objective of this study is to analyze the insulation characteristics of the polylon hybrid fiber inserted high-strength RC beam and slab produced as a single body and the results of this study can be summarized as follows. In the spalling mechanism as an insulation characteristic, the slab of the single body type specimen shows an exposure in concrete covers at the center of slab and that leads to the spalling, which exposures reinforcing bars. In the case of the beam, the spalling was presented at several sections as a type of peel spalling before and after 10 minutes from the insulation test. Whereas, although the internal temperature history of concrete represents the highest range as 581℃ in the case of the center of the bottom of beam base, it can be considered that it satisfies the regulation of insulation certification.

  • PDF

CO Oxidation of Catalytic Filters Consisting of Ni Nanoparticles on Carbon Fiber

  • Seo, Hyun-Ook;Nam, Jong-Won;Kim, Kwang-Dae;Kim, Young-Dok;Lim, Dong-Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1199-1203
    • /
    • 2012
  • Catalytic filters consisting of Ni nanoparticle and carbon fiber with different oxidation states of Ni (either metallic or oxidic) were prepared using a chemical vapor deposition process and various post-annealing steps. CO oxidation reactivity of each sample was evaluated using a batch type quartz reactor with a gas mixture of CO (500 mtorr) and $O_2$ (3 torr) at $300^{\circ}C$. Metallic and oxidic Ni showed almost the same CO oxidation reactivity. Moreover, the CO oxidation reactivity of metallic sample remained unchanged in the subsequently performed second reaction experiment. We suggested that metallic Ni transformed into oxidic state at the initial stage of the exposure to the reactant gas mixture, and Ni-oxide was catalytically active species. In addition, we found that CO oxidation reactivity of Ni-oxide surface was enhanced by increase in the $H_2O$ impurity in the reactor.

Spectral-shape-controllable Chirped Fiber Bragg Grating with a Photomechanical Microactuator: Simulation and Experiment

  • Moon, Jong-Ju;Ko, Youngmin;Park, Su-Jeong;Ahn, Tae-Jung
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.477-482
    • /
    • 2020
  • Recently, one of the authors has been reported an optically tunable fiber Bragg grating (FBG) with a photomechanical polymer. It was based on a typical FBG with a downsized diameter of 60 ㎛, coated with azobenzene-containing polymer material. Azobenzene is a well-known reversibly photomechanical stretchable material under ultraviolet (UV) light. The small part of the functional-coating region on the FBG absorbed UV light, which pulled the UV-exposed part of the grating. It was selectable as tunable FBG or tunable chirped FBG, by adjusting the position of UV exposure on the grating. As proof of concept for the tunable FBG device, the characteristics just including UV-induced center-wavelength shift and spectral-width changes of the device were reported. In this paper, we report for the first time that the microactuator makes it possible to control the spectral shape of the FBG reflection, according to the specifications (shape and intensity) of the UV beam that reaches the FBG coated with the azobenzene polymer. In addition, we provide the group-delay profiles for the chirped FBG, so that the sign of its dispersion (normal or anomalous) can be tailored by simply selecting the moving direction of the UV light's displacement in the experiment.