• 제목/요약/키워드: Fiber distribution

검색결과 977건 처리시간 0.029초

Flexural performance and fiber distribution of an extruded DFRCC panel

  • Lee, Bang Yeon;Han, Byung-Chan;Cho, Chang-Geun;Kim, Yun Yong
    • Computers and Concrete
    • /
    • 제10권2호
    • /
    • pp.105-119
    • /
    • 2012
  • This paper presents the mix composition and production method that was applied to an extruded Ductile Fiber Reinforced Cement Composite (DFRCC) panel, as well as the flexural performance, represented by deformation hardening behavior with multiple cracking. The effect of fiber distribution characteristics on the flexural behavior of the panel is also addressed. In order to demonstrate the fiber distribution effect, a series of experiments and analyses, including a sectional image analysis and micromechanical analysis, was performed. From the experimental and analysis results, it was found that the flexural behavior of the panel was highly affected by a slight variation in the mix composition. In terms of the average fiber orientation, the fiber distribution was found to be similar to that derived under the assumption of a two-dimensional random distribution, irrespective of the mix composition. In contrast, the probability density function for the fiber orientation was measured to vary depending on the mix composition.

고유동 강섬유보강 모르타르의 유동에 따른 섬유의 방향성 분포특성 변화의 예측 (Numerical Simulation for the Variation of the Fiber Orientation Distribution according to the Flow of High-Flow Steel-Fiber Reinforced Mortar)

  • 강수태;김진근
    • 한국전산구조공학회논문집
    • /
    • 제22권6호
    • /
    • pp.639-646
    • /
    • 2009
  • 고유동 강섬유보강 모르타르는 타설과정에서 특정한 섬유 방향성 분포를 가질 수 있으며, 이에 따라 재료의 인장거동 특성에 영향을 미칠 수 있다. 본 연구에서는 고유동 강섬유보강 모르타르의 타설단계에서의 유동에 따른 강섬유의 섬유 방향성 분포의 변화를 해석적으로 구하였다. 해석결과에 따르면 180mm 간격으로 나란히 놓여진 두 평판 사이에 흐르는 모르 타르의 전단흐름에 의한 섬유의 방향성 변화는 초기 150mm이내에서 크게 발생하는 것을 확인할 수 있었으며, 이후에서는 방향성 분포의 경향은 크게 변하지 않으며, 다만 흐름방향에 나란한 섬유의 밀도가 집중적으로 커지는 것을 볼 수 있었다. 섬유의 방향성과 섬유보강 복합체의 인장거동과 밀접한 관련성을 고려할 때, 이와 같은 방향성의 예측을 바탕으로 유동에 따른 고유동 강섬유보강 모르타르의 인장거동 변화의 예측이 가능할 것이다.

서로 다른 길이의 PVA 섬유 혼합에 따른 시멘트 복합체의 균열제어 특성 (Control of Shrinkage Cracking of Cement Composites with Different Length Mixture of PVA Fibers)

  • 원종필;김명균;박찬기;김완영;박경훈;장창일
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.405-408
    • /
    • 2006
  • The purpose of this study was to determine the optimum length distribution of hybrid PVA(Poly vinyl alcohol) fiber. To produce blended PVA fiber length, first the length distribution of PVA fiber in the cement composites were identified in an experimental study based on simplex lattice design. Among the different length distributions investigated, fiber length was found to have statistically significant effect on plastic shrinkage cracking of cement composites. Subsequently, Complex analysis techniques were used to devise an experimental program that helped determine the optimum combinations of the selected fiber length distribution based on plastic shrinkage crack. The optimum blended PVA length ratio was 0.0146% 4mm fiber, 0.0060% 6-mm fiber, 0.0285% 8-mm fiber, and 0.0209% 12-mm fiber.

  • PDF

다양한 형태의 보강섬유 굴곡을 가지는 두꺼운 복합재료의 인장/압축 하중 하에서의 응력/변형률 분포 (Stress and Strain Distribution of Thick Composites with Various Types of Fiber Waviness under Tensile and Compressive Loadings)

  • 신재윤;이승우;전흥재
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.97-100
    • /
    • 2000
  • A FEA(finite element analysis) model was proposed to study stress and strain distributions in thick composites with various types of fiber waviness under tensile and compressive loadings. Three types of model were considered in this study: uniform fiber waviness, graded fiber waviness and localized fiber waviness models. In the analysis, both material and geometrical nonlinearities due to fiber waviness were incorporated into the model utilizing energy density and incremental method. The strain distributions of uniform fiber waviness model were strongly influenced whereas the stress distributions were little influenced by fiber waviness. The stress and strain distributions of graded and localized fiber waviness models showed more complex distributions than those of uniform fiber waviness model due to the variation of fiber waviness along the thickness and length directions. It was concluded that the stress and strain distributions of composites with fiber waviness were significantly affected by types of fiber waviness.

  • PDF

화상처리에 의한 섬유배향각 분포측정에 있어서 교차점합산법의 정밀도 (Accuracy of Intersection Counting Method in Measurement of Fiber Orientation Angle Distribution Using Image Processing)

  • 이상동;박준식;이동기;한길영;김이곤
    • 한국정밀공학회지
    • /
    • 제15권12호
    • /
    • pp.97-105
    • /
    • 1998
  • The fiber oriented condition inside fiber reinforced composite material is a basic factor of mechanical properties of composite materials. It is very important to meausure the fiber orientation angle for the determination of molding conditions, mechanical characteristics, and the design of composite materials. In the work, the fiber orientation distribution of simulation figure plotted by PC is measured using image processing in order to examine the accuracy of intersection counting method. The fiber orientation function measured by intersection counting method using image processing is compared with the calculated fiber orientation function. The results show that the measured value of fiber orientation function using intersection counting method is lower than the calculated value, because the number of intersection between the scanning line and the fiber with smaller fiber aspect ratio is counted less than with larger fiber aspect ratio.

  • PDF

장섬유강화 플라스틱 복합재의 사출성형에 있어서 두께방향의 섬유배향 분포측정 (Measurement of the Fiber Orientation Distribution for Thickness direction of Injection Molded Long Fiber Reinforced Polymeric Composites)

  • 윤성운;박진국;조선형;김이곤
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.199-204
    • /
    • 1998
  • In this study, a method is presented which can be used to measure the fiber orientation distribution for thickness direction during injection molding using image processing. The intensity method in used for measuring the distribution. And the effects of fiber content, injection molding condictions on the orientation function are also discussed.

  • PDF

Micro-CT 스캐닝을 통한 섬유보강 콘크리트 기둥내부 강섬유의 배향성 및 위치분포 분석 (Analysis of Orientation and Distribution of Steel Fiber in Fiber Reinforced Concrete Column by Micro-CT Scanning)

  • 박태훈;서형원;배성철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.23-24
    • /
    • 2019
  • In this study, analysis of steel fiber orientation and distribution inside fiber reinforced concrete was performed using micro-CT scanning technology. Samples were extracted from the column according to its height and distance from the mold. Samples were scanned in order to attain the image of steel fibers then region of interest were obtained by binarization process. By calculating the principle moment of inertia of each fiber, direction vector, scale, center postion, volume, and surface area were gained in order to analyze the orientation and distribution. Most of the fibers inside the column tended to be perpendicular to the main axis of the column. Moreover, most of the fibers appeared at the bottom of the column and at the position where it is farthest from the mold.

  • PDF

농도법에 의한 GFRP 복합재료의 섬유배향각 분포측정 (Measurement of Fiber Orientation-Angle Distribution of Glass Fiber Reinforced Polymeric Composite Materials by Intensity Method)

  • 김혁;안종윤;이동기;한길영;김이곤
    • 한국정밀공학회지
    • /
    • 제13권6호
    • /
    • pp.34-44
    • /
    • 1996
  • In order to examine the accuracy of the intensity method, the fiber orientation-angle distribution of fiber-reinforced polymeric composites is measured using image processing. The fiber orientation function is calculated from the fiber orientation measured by the soft X-ray photograph. Theoretical and experimental results of fiber orientation function are compared for the composites with different fiber contents and fiber orientations. The intensity method is used for the experimental investigation and the measured fiber orientation function is compared to the calculated one. The relations between the measured and the simulated fiber orientation functions $J{\small{M}}$ and $J{\small{S}}$ respectively are identified. For the fiber length of 1.000mm and 2.000mm, it shows that $J{\small{M}}=0.83J{\small{M}}$. However. in general. the value of $J{\small{M}}$ decreases as the fiber length increases. For GFRP composites the relations between $J{\small{M}}$ and theoretical value J show that $J{\small{M}}$=0.73J for short fiber and $J{\small{M}}$=0.81J for long fiber.

  • PDF

Prediction of ECC tensile stress-strain curves based on modified fiber bridging relations considering fiber distribution characteristics

  • Lee, Bang Yeon;Kim, Jin-Keun;Kim, Yun Yong
    • Computers and Concrete
    • /
    • 제7권5호
    • /
    • pp.455-468
    • /
    • 2010
  • This paper presents a prediction and simulation method of tensile stress-strain curves of Engineered Cementitious Composites (ECC). For this purpose, the bridging stress and crack opening relations were obtained by the fiber bridging constitutive law which is quantitatively able to consider the fiber distribution characteristics. And then, a multi-linear model is employed for a simplification of the bridging stress and crack opening relation. In addition, to account the variability of material properties, randomly distributed properties drawn from a normal distribution with 95% confidence are assigned to each element which is determined on the basis of crack spacing. To consider the variation of crack spacing, randomly distributed crack spacing is drawn from the probability density function of fiber inclined angle calculated based on sectional image analysis. An equation for calculation of the crack spacing that takes into quantitative consideration the dimensions and fiber distribution was also derived. Subsequently, a series of simulations of ECC tensile stress-strain curves was performed. The simulation results exhibit obvious strain hardening behavior associated with multiple cracking, which correspond well with test results.

오존처리(處理) 고수율(高收率)펄프의 고해(叩解) 특성(特性)(I) - 오존처리(處理) 펄프 고해후(叩解後) 섬유장(纖維長) 분포(分布) - (The Beating Properties of High Yield Pulp Treated Ozone(I) - Fiber Length Distribution of Ozonenation Pulp for Beating -)

  • 윤승락;코지마 야스오
    • Journal of the Korean Wood Science and Technology
    • /
    • 제25권2호
    • /
    • pp.75-80
    • /
    • 1997
  • This research has been examined to measure the degree of the fiber damage of ozonenation high yield pulp in the beating process. Ozone treated the TMP(Thermomechanical Pulp) and CTMP(Chemithermomechanical Pulp) of spruce and the CTMP of birch has been beaten to be reached 200ml(freeness) of its content. It had been studied the forming of fiber distribution by treatment for long fiber, short fiber, fine with the above method. As ozone treatment time gets longer, the pulp has showed the tendency of increasing the fiber content of 28, 48mesh. Ozone treated fiber has been increased long fiber content by being added softness. By given longer ozone treatment time, the TMP and CTMP of spruce has showed the decreasing of fiber content. On the contrary, CTMP of birch has showed the increasing its fiber content. It had proved that the results of difference are rather closer to the species of tree than closer to the kinds of pulp. The fiber content of over 200mesh which has created in beating process demonstrates the decreasing of its fiber content by getting longer ozone treatment time. The softness of fiber can be extracted by the lignin of fiber surface that had been formed by ozone treatment. Thus we assume that the fiber in the process of beating obtains less physical damage.

  • PDF