• 제목/요약/키워드: Fiber Strength

검색결과 4,091건 처리시간 0.034초

섬유의 종류, 형상 및 치환율에 따른 HPFRCC의 공학적 특성에 관한 실험적 연구 (An Experimental Study on the Engineering Properties of HPFRCC According to Kinds, Shapes and Volume Fraction of Fibers)

  • 김영덕;조봉석;김재환;김규용;최경렬;김무한
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문발표회
    • /
    • pp.59-62
    • /
    • 2003
  • Kinds, shapes and fraction ratios of fibers have influence on properties of HPFRCC(High-Performance Fiver Reinforced Cementitious Concrete ) like bending strength, strain capacity and fracture toughness. For example, hydrophilic fibers have different chemical bond strength from hydrophobic fibers, fiber shapes influence on fiber pull-out and rupture, and fiber volume fraction influence on bending strength. In this study, to estimate influences of kinds, shapes and fraction ratios of fibers, we make HFRCC with 3 kind of fiber in various volume fraction of fiber and compare cracking, bending strength and fracture toughness. As the results, bending strength of HPFRCC was increased as fiber volume fraction was Increase and fiber tensile strength was increase, and strain capacity and fracture toughness of HFRCC was higher in fiber pull-out fracture than in fiber rupture fracture. And HFRCC showing pseudo strain hardening has higher fiber reinforce efficiency than others.

  • PDF

섬유-Matrix의 계면전단강도에 관한 통계적고찰 (Statistical Analysis of Interfacial Shear Strength on Fiber-Matrix)

  • 문창권;남기우;엄윤성
    • 대한기계학회논문집
    • /
    • 제16권2호
    • /
    • pp.200-206
    • /
    • 1992
  • The effect of fiber diameter and gauge length on pull-out test for the interfacial properties in fiber reinforced resin composites have been investigated and these results have been arranged as statistical analysis. The fiber and matrix resins used for this study were stainless steel fiber (SUS316) and carbon fiber (high strength type), epoxy and high density polyethylene resin. From this study, it has been found that shear strength are constant regardless of gauge length of pull-out test and coefficient of variation depend on fiber diameter. In addition, it has been found that the interfacial shear strength decreased with the increasing fiber diameter, and in all case, Weibull parameter (m) has approximately 1.2/C.O.V.

인장/압축 하중 하에서 FEA를 이용한 굴곡진 보강섬유를 가진 두꺼운 복합재료의 강도예측에 관한 연구 (Strength Prediction of Thick Composites with Fiber Waviness under Tensile/Compressive Load Using FEA)

  • 류근수;전흥재
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.129-132
    • /
    • 2001
  • Fiber waviness is one of manufacturing defects encountered frequently in thick composite structures. It affects significantly on the behavior as well as strength of thick composites. The effects of fiber waviness on tensile/compressive nonlinear elastic behavior and strength of thick composite with fiber waviness are studied theoretically and experimentally. FEA(Finite Element Analysis) models are proposed to predict tensile/compressive nonlinear behavior and strength of thick composites. In the FEA models, both material and geometric nonlinearities were incorporated into the model using energy density, iterative mapping and incremental method. Also Tsai-Wu criteria was adopted to predict the strength of thick composites with fiber waviness. Tensile and compressive tests were conducted on the specimens with uniform fiber waviness. It was observed that the degree of fiber waviness in composites significantly affected the nonlinear behavior and strength of the composites

  • PDF

섬유혼합보강토의 일축강도 특성 (Unconfined Strength Characteristics of Fiber Reinforced Soil)

  • 장병욱
    • 한국농공학회지
    • /
    • 제41권1호
    • /
    • pp.72-78
    • /
    • 1999
  • The purpose of this study was to evaluate the properties of unconfined strength of dry soil which was reinforced with polypropylene fiber. It is found that unconfined compressive strength and strain of dry soil without fiber were decreased as water content was increased. As mixing ration of fiber was increased , unconfined compressive strength and failure strain of dry soil reinforced with polypropylene fiber were increased. When mixing ration was larger than 0.5 % , unconfined compressive strength was gradually increased. The longer fiber was, the largest post peak strength was obtained and the larger strain was reached. Tensile strength of dried fiber reinforced soil was larger than that of dry soil without fiber.

  • PDF

1축 및 2축 압축을 받는 고강도콘크리트 및 강섬유보강 고강도콘크리트의 거동 (Behavior of Plain and Steel Fiber Reinforced High Strengh Concrete Under Uniaxial and Biaxial Compression)

  • 임동환;박성환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.5-8
    • /
    • 2005
  • The purpose of this study is to investigate the mechanical characteristics of plain and steel fiber high strength concrete under uniaxial and biaxial loading condition. A number of plain and steel fiber high strength concrete cubes having 28 days compressive strength of 82.7Mpa (12,000psi) were made and tested. Four principal compression stress ratios, and four fiber concentrations were selected as major test variables. From test results, it is shown that confinement stress in minor stress direction has pronounced effect on the strength and deformational behavior. Both of the stiffness and ultimate strength of the plain and fiber high strength concrete increased. The maximum increase of ultimate strength occurred at biaxial stress ratio of 0.5 in the plain high strength concrete and the value were recorded 30 percent over than the strength under uniaxial condition. The failure modes of plain high strength concrete under uniaxial compression were shown as splitting type of failure but steel fiber concrete specimens under biaxial condition showed shear type failure.

  • PDF

나일론 섬유의 형상비 및 혼입률 변화에 따른 고강도 콘크리트의 폭렬특성 (Spalling Properties of High Strength Concrete Made with Various Aspect Ratios and Fiber Contents of Nylon Fiber)

  • 송용원;허영선;이성연;한창평;양성환;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2007년도 춘계학술논문 발표대회
    • /
    • pp.55-58
    • /
    • 2007
  • This study investigates the spatting properties of high strength concrete, $60\sim80MPa$ class, designed with diverse aspect ratios and fiber content of nylon(NY). Test showed that increase of fiber content and aspect ratio in concrete decreased the fluidity of fresh concrete, especially for 1580 and 3000 aspect ratio of fiber. As for the compressive and tensile strength, adding NY fiber did not significantly affect the values In the range of high strength. After completing the fire test, the specimens containing both 750 and 1000 aspect ratios of fiber protected the spatting occurrence even in 0.05vol.% of fiber content. This specimens indicated the residual compressive strength ratio at 37%, showing the most favorable value among other specimens. Therefore, it is demonstrated that to protect the spalling in high strength concrete considering the effective fluidity, strength and economic efficiency altogether, adding 0.05vol.% of NY fiber with 750 aspect ratio Is beneficial.

  • PDF

강섬유보강 콘크리트보의 휨강도에 관한 연구 (Flexural Strength of Steel Fiber Reinforced Concrete Beams)

  • 김우석;백승민;곽윤근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.695-700
    • /
    • 2001
  • The objective of this study is to evaluate the flexure strength of steel fiber reinforced concrete beams and the effect of the adding steel fiber to flexural strength, and is to compare the proposed equation with the previous equation for predicting the flexural strength of fiber reinforced concrete beams. Based on earlier published studies and tests, predictive equation is proposed for evaluating the flexural strength of steel fiber reinforced concrete beams. The proposed equation gave good prediction for the flexural strength of the tested beams.

  • PDF

Workability and Mechanical Properties of Hybrid Fiber Reinforced Concrete Using Amorphous Steel Fiber and Polyamide Fiber

  • Kwon, Soon-Oh;Bae, Su-Ho;Lee, Hyun-Jin;Kim, Yo-Seb;Jun, Jin;Kim, Wha-Jung
    • 한국건설순환자원학회논문집
    • /
    • 제4권4호
    • /
    • pp.470-476
    • /
    • 2016
  • Many studies have been performed on hybrid fiber reinforced concrete for years, which is to improve some of the weak material properties of concrete. Studies on characteristics of hybrid fiber reinforced concrete using amorphous steel fiber and polyamide fiber, however, yet remain to be done. The purpose of this experimental research is to evaluate the workability and mechanical properties of hybrid fiber reinforced concrete using amorphous steel fiber and polyamide fiber. For this purpose, the hybrid fiber reinforced concrete containing amorphous steel fiber(ASF) and polyamide fiber(PAF) were made according to their total volume fraction of 0.5 % for water-binder ratio of 33 %, and then the mechanical properties such as the compressive strength, direct tensile strength, flexural strength, and flexural toughness of those were estimated. It was observed from the test results that the compressive strength was slightly decreased with increasing ASF and decreasing PAF and the effect of fiber combination on the flexural strength was not much but the flexural toughness was relatively largely increased with decreasing ASF and increasing PAF.

하이브리드형 단섬유보강 시멘트복합재료의 개발에 관한 실험적 연구 (An Experimental Study on the Development of Hybrid Discontinuous Fiber Reinforced Cementitious Composite)

  • 김영덕;조봉석;김재환;김용로;윤현도;김무한
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문발표회
    • /
    • pp.57-60
    • /
    • 2003
  • Generally, normal concrete has the disadvantages of low tensile strength, low ductility and volume instability. To improve its performance, fiber reinforced cimentitious composite(FRCC) have been development. These composites are composed of cement, sand, water, a small amount of admixtures, and an optimal amount of fiber like synthetic fiber and steel fiber. This research investigates influence of sand, hybrid fiber and fiber volume fraction, and reports the test results of mechanical properties, fracture behavior and failure pattern of the FRCC. Our experiment was observed that sand mixed FRCC has lower compressive strength and higher bending strength than no sand mixed FRCC, and more steel fiber mixed FRCC has higher compressive strength and bending strength. Hybrid FRCC of steel and polypropylene had superior properties than FRCC of polypropylene only in same fiber volume fraction.

  • PDF

Effect of strain level on strength evaluation of date palm fiber-reinforced sand

  • Bahrami, Mohammad;Marandi, Seyed Morteza
    • Geomechanics and Engineering
    • /
    • 제21권4호
    • /
    • pp.327-336
    • /
    • 2020
  • Conventional researches on the behavior of fiber-reinforced and unreinforced soils often investigated the failure point. In this study, a concept is proposed in the comparison of the fiber-reinforced with unreinforced sand, by estimating the strength and strength ratio at different levels of strain. A comprehensive program of laboratory drained triaxial compression test was performed on compacted sand specimens, with and without date palm fiber. The fiber inclusion used in triaxial test specimens was form 0.25%-1.0% of the sand dry weight. The effect of the fiber inclusion and confining pressure at 0.5%, 1.0%, 1.5%, 3.0%, 6.0%, 9.0%, 12%, and 15% of the imposed strain levels on the specimen were considered and described. The results showed that, the trend and magnitude of the strength ratio is different for various strain levels. It also implies that, using failure strength from peak point or the strength corresponding to the axial strain of approximately 15% for evaluating the enhancement of strength or strength ratio, due to the reinforcement, may cause hazard and uncertainty in practical design. Therefore, it is necessary to consider the strength of fiber-reinforced specimen at the imposed strain level, compared to the unreinforced specimen.