• Title/Summary/Keyword: Fiber Sheet

Search Result 623, Processing Time 0.026 seconds

Prediction of Chemical Organic Composition of Manure by Near Infrared Reflectance Spectroscopy

  • Amari, Masahiro;Fukumoto, Yasuyuki;Takada, Ryozo
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1265-1265
    • /
    • 2001
  • The organic materials included in excreta of livestock are important resources for organic manure and for improving soil quality, although there is still far from effective using. One reason for this is still unclearly standard of quality for evaluation of manure made from excreta of livestock. Therefore, the objective of this study is to develop rapid and accurate analytical method for analyzing organic compositions of manure made from excreta of livestock, and to establish quality evaluation method based on the compositions predicted by near infrared reflectance spectroscopy (NIRS). Sixteen samples of manure, each eight samples prepared from two treatments, were used in this study. The manure samples were prepared by mixing 560 kg feces of swine,60 kg sawdust with moisture content was adjusted to be 65%. The mixture was then keep under two kinds of shelter, black and clear sheets, as a treatment on the effect of sunlight. Samples were taken in every week (form week-0 to 7) during the process of manure making. Samples were analyzed to determine neutral detergent fiber (NDF), acid detergent fiber (ADF) and acid detergent lignin (ADL) by detergent methods, and organic cell wall (OCW) and fibrous content of low digestibility in OCW (Ob) by enzymatic methods. Biological oxygen demand (BOD) was analyzed by coulometric respirometer method. These compositions were carbohydrateds and lignin that were hardly digested. Spectra of samples were scanned by NIR instrument model 6500 (Pacific Scientific) and read over the range of wavelength between 400 and 2500nm. Calibration equations were developed using eight manure samples collected from black sheet shelter, while prediction was conducted to the other eight samples from clear sheet shelter. Accuracy of NTRS prediction was evaluated by correlation coefficients (r), standard error of prediction (SEP) and ration of standard deviation of reference data in prediction sample set to SEP (RPD). The r, SEP and RPD value of forage were 0.99, 0.69 and 7.6 for ADL, 0.96, 1.03 and 4.1 for NDF, 0.98, 0.60 and 4.9 for ADF, 0.92, 1.24 and 2.6 for Ob, and 0.91, 1.02 and 7.3 for BOD, respectively. The results indicated that NIRS could be used to measure the organic composition of forage used in manure samples.

  • PDF

Flexural Characteristics of Reinforced Polymer Concrete T-Beams Strengthened with GFRP (GFRP 보강 철근 폴리머 콘크리트 T형 보의 휨 특성)

  • Jin, Nan-Ji;Hwang, Hae-Geun;Yeon, Jung-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.585-596
    • /
    • 2012
  • In this study, the flexural characteristics of reinforced polymer concrete T-beams strengthened with GFRP, typically used for bridges and parking structures, are investigated. A method to determine the flexural failure mode of reinforced polymer concrete T-beams comprised of compression failure (CF), tension failure (TF), and fiber sheet failure (FF) for different levels of GFRP strengthening is proposed. Moreover, the present study provides a formula to calculate the design flexural strength for each failure mode. In reinforced polymer concrete T-beams strengthened with GFRP, an ideal failure mode can be achieved when the failure occurs in the following order: 1) yield of steel reinforcement, 2) failure of GFRP, and 3) compression failure of concrete. In the case of FF mode, due to GFRP failure before the polymer concrete crushing in compression region, a concept of equivalent rectangular block based on the ultimate limit state of concrete should not be used. Thus, this study suggests an idealized stress-strain curve for polymer concrete and finds parameters for stress block, ${\alpha}$ and ${\beta}$ based on the strain distribution in polymer concrete. Furthermore, the present study suggests an aspect ratio of 2.5 by examining the compressive stress distribution and design flexural strength characteristics for different aspect ratio of T-beams. This study also provides a design flexural strength formula, and validates its acceptability based on experiment and theoretical analysis.

Impact Resistance Evaluation of RC Beams Strengthened with Carbon FRP Sheet and Steel Fiber (CFRP 시트 및 강섬유로 보강된 RC 보의 충격저항 성능 평가)

  • Cho, Seong-Hun;Min, Kyung-Hwan;Kim, Yun-Ji;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.719-725
    • /
    • 2010
  • The analysis and experimental program of reinforced concrete (RC) structures for resistance against such extreme loads as earthquake, blast, and impact have been carried by many researchers and designers. Under the extreme loads, a large amount of energy is suddenly exerted to the structure, hence if the structure fails to absorb the impact energy, catastrophic collapse may occur. To prevent catastrophic collapse of structures, reinforced concrete must have adeguate toughness or it needs to be strengthened. The FRP strengthening method and SFRC are studied widely in resistance of impact load because of their high energy absorption capacity. In this study, drop weight impact tests were implemented to evaluate the impact resistance of SFRC and FRP strengthened RC beam while the total steel fiber volume fractions was fixed at 0.75% carbon FRP flexural strengthened RC beams. Futhermore, to prevent the shear-plug cracks when the impact load strikes the beams, additional FRP shear strengthening method are applied. The experimental, results showed that the FRP strengthened RC SFRC beams has high resistance of shear-plug cracks and crack width and SFRC has high resistance of concrete spalling failure compared to normal RC beams. The FRP flexural and shear strengthening RC beams has weakness in the spalling failure because the impact load concentrated the concrete face which is not strengthened with FRP sheets.

Study on the Manufacturing of Leather-like Material using Leather and Textile Scrap (피혁 및 섬유 제조공정 폐기물을 활용한 피혁 대체 소재의 제조에 관한 연구)

  • Kim, Won-Ju;Ko, Jae-Yong;Heo, Jong-Soom
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.4
    • /
    • pp.93-99
    • /
    • 2000
  • Treatment of shaving scrap, a chrome containing solid scrap generated by leather manufacturing process, has been so far depended on mainly incineration, soil landfill and ocean dumping, which give bad impact on environment and cause pollution. Shaving scrap generates from the mechanical work for controlling the final thickness of leather and its main components are collagen protein and pan of chromium compound. For the purpose of reusing this leather waste as resources, researches in connection with collagen fiber recovery, gelable protein recovery and liquid fertilizer is being speedily progressed. In the experiment, shaving scrap went through wet pulverizing treatment by physical and chemical methods. Then, making the leather sheet evenly, it is mixed with natural latex and every kind of binding materials in the container, and the mixtures were passed through experimental hydraulic press machine and applied to Fourdrinier machine respectively. Lastly, a test for fading out physical strength and properties of multiple-purpose of leather-like material was performed on a continuous leather sheet prepared by the experiment. In result, the physical strength and properties of leather-like material showed noticeable differences according to mixing ratio of binding materials, beating methods and the Ends of binding materials selected, and generally tear strength was the weakest property among others. Also, by the pilot scale experiment in sequence, it was possible to manufacture recycled goods made of soft and hard types of leather-like material with various performances.

  • PDF

Preparation of Cellulose Nanofibril/Regenerated Silk Fibroin Composite Fibers

  • Lee, Ji Hye;Bae, Chang Hyun;Park, Byung-Dae;Um, In Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.26 no.2
    • /
    • pp.81-88
    • /
    • 2013
  • Wet-spun silk fibers have attracted the attention of many researchers because of 1) the unique properties of silk as a biomaterial, including good biocompatibility and cyto-compatability and 2) the various methods available to control the structure and properties of the fiber. Cellulose nanofibrils (CNFs) have typically been used as a reinforcing material for natural and synthetic polymers. In this study, CNF-embedded silk fibroin (SF) nanocomposite fibers were prepared for the first time. The effects of CNF content on the rheology of the dope solution and the characteristics of wet-spun CNF/SF composite fibers were also examined. A 5% SF formic acid solution that contained no CNFs showed nearly Newtonian fluid behavior, with slight shear thinning. However, after the addition of 1% CNFs, the viscosity of the dope solution increased significantly, and apparent shear thinning was observed. The maximum draw ratio of the CNF/SF composite fibers decreased as the CNF content increased. Interestingly, the crystallinity index for the silk in the CNF/SF fibers was sequentially reduced as the CNF content was increased. This phenomenon may be due to the fact that the CNFs prevent ${\beta}$-sheet crystallization of the SF by elimination of formic acid from the dope solution during the coagulation process. The CNF/SF composite fibers displayed a relatively smooth surface with stripes, at low magnification (${\times}500$). However, a rugged nanoscale surface was observed at high magnification (${\times}10,000$), and the surface roughness increased with the CNF content.

Preparation of Cellulose Nanofibers from Domestic Plantation Resources (국내 자생 식물자원을 이용한 셀룰로오스 나노섬유의 제조 기술 개발)

  • Jang, Jae-Hyuk;Kwon, Gu-Joong;Kim, Jong-Ho;Kwon, Sung-Min;Yoon, Seung-Lak;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.156-163
    • /
    • 2012
  • This research has been carried out to investigate the characteristics of cellulose nanofibers manufactured from domestic lignocellulosic materials by mechanical grinding method. The continuous grinding process was effective for loosening cell wall structure, with increasing grinding time, much smaller nanofibers were observed. Filtration time was linearly increased with increasing grinding time for all experimental materials. Relative crystallinity of cellulose was not changed by grinding process, but increased by delignification treatment. Tensile property of fiber sheets was drastically improved with increasing grinding time. Fibers sheets obtained from delignified cone stalks showed an excellent tensile strength. Consequently, it is considered that this study presented some effective information for manufacturing cellulose nanofibers with domestic plantation resources.

Analysis of Probability and Extended Life Cycle of Strengthened Bridge Deck (성능향상된 교량 바닥판의 확률론적 해석 및 수명연장 분석)

  • Sim, Jong-Sung;Oh, Hong-Seob;Choi, Jang-Whan;Kim, Eon-Kyoung
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.635-642
    • /
    • 2003
  • Although the strengthening effect of deteriorated concrete bridge decks has been studied by various authors, most researches are focused on the experimental works on the pulsating loading in laboratory in spite of deterioration of deck caused by moving vehicle loads. In this research, a theoretical live load model that was proposed to reflect an effect of moving vehicle loads is formulated from a statistical approach on the measurement of real traffic loads for various time periodsin Korea. Fatigue life and strengthening effect of strengthened bridge decks strengthened with either Carbon Fiber Sheet or Grid typed Carbon Fiber Polymer Plastic by the probabilistic and the reliability analyses are assessed. As a results, secondary bridge deck (DB18) strengthened with FRP ensures a sufficient fatigue resistance against the increased traffic loads as well as load carrying capacity in life cycle.

Modeling of Electromagnetic Wave Propagation for Detection of Bond Delamination in Concrete (콘크리트 보강재 박리 검사를 위한 전자파 모델링)

  • 남연수;임홍철
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.261-269
    • /
    • 2004
  • The existing concrete beams can be retrofitted or reinforced by attaching carbon fiber or glass fiber sheet beneath the beams. Although diverse design methods and application techniques of the retrofitting are studied and developed, the testing method of examining retrofitted beams have not been put into practice yet. In this study, a bond delamination has been modeled and studied to provide a basis for the development of actual testing equipments. For this purpose, Gaussian and sinusoidal waves with 3GHz and 5GHz center frequency are used as an incident wave and 1mm and 3mm bond delamination under the reinforcement are modeled. In the modeling, Finite Difference-Time Domain algorithm is used to investigate the behavior of electromagnetic waves in concrete. The results have shown that 5GHz waves are suitable for the detection of delamination.

Effects of Recycling on the Adsorption of Cationic Polyacrylamide onto Fiber and Fines (리사이클링 횟수에 따른 장섬유와 미세섬유의 폴리아크릴아미드 흡착특성 및 종이의 물성 변화)

  • 주성범;이학래
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.1
    • /
    • pp.31-38
    • /
    • 1999
  • Adsorption of polymeric flocculants and dry strength agents onto the surface of papermaking fibers is critical for their effective utilization since the polymeric substances not adsorbed on fibers or fines keep recirculating in the papermaking system to cause various operational difficulties and loss of raw materials. Problems associated with the unadsorbed polymeric substances generate great attention because unprecedent interests in utilization of recycled papers and papermaking system closure. In this study, to understand the effects of recycling on the adsorption propensity of cationic polyacryamide (PAM) dry strength resin onto hardwood bleached kraft pulp fibers and fines a systematic approach was followed. Never dried bleached hardwood kraft pulp was recycled in two different ways. In mode one recycling experiment never dried pulp was beaten then recycled three times by employing simple drying and disintegrating steps. In mode two recycling experiment beating of the recycled pulp was carried out after each recycling step. Adsorption of cationic PAM on fibers and fines was evaluated employing Kjeldahl nitrogen analysis method. The influence of recycling on water retention value, carboxyl content, sheet density and tensile strength of the pulp was examined. As the number of recycling increased, water retention value of the fiber was reduced due to hornification and this in turn caused a decrease in adsorption of cationic PAM. On the other hand, the carboxyl content of the recycled fibers increased because of the oxidation of fibers occurred during drying, and this caused an increase in adsorption of cationic PAM. Because of these two opposing factors the adsorption of the cationic PAM on the recycled fibers decreased and then increased slightly at third recycling step. Increase of PAM adsorption, however, did not provide did not provide and strength improvement for the recycled pulp fibers indicating greater influence of the honification on interfiber bonding.

  • PDF

Studies on the Application of Starch for paper surface sizing(III) - The influence of surface sizing treatment with starch on the quality of uncoated printing paper - (종이 표면 사이즈 프레스용 전분의 적용에 관한 연구 -표면 사이즈용 전분이 백상지 품질에 미치는 영향 -)

  • 윤지영;이용규
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.2
    • /
    • pp.1-12
    • /
    • 2002
  • Starch dissolved in paper-mill wastes, either as a result of poor retention on the paper web or recycling of surface-treated broke, was a major pollutant Laboratory tests were performed by using different kinds of starch as a surface treatment. It was concluded that the use of cationic starch can positively affect the level of starch dissolved in liquid effluents. When cationically modified starches were used for surface sizing, the starch was tightly bound to the paper fibers, it was not removed during the repulping of broke. The result of mill trial in fine paper manufacture for the application of low-viscosity cationic starches used in size press reduced COD load in the effluents and increased One Pass Retention. It had been found that when cationic starch used as a surface sizing agent, more starch was retained on or near the surface of the sheet than with conventional oxidized starches. Thus surface strengths and quality were improved. In addition it is possible to maintain the desired level of starch penetration into the fiber net and improve porosity, opacity and brightness. In contrast, in most cases, dusting problems are notably eliminated. Cationic surface sized starch improved black and color ink-jet print quality in terms of feathering and optical density of the print image. These improved properties were believed to be due to a combination of fiber bonding and surface orientation more uniform starch concentration on the paper surface was resulted. Moreover cationic charges in the paper surface lend themselves excellently to fix ink jet ink anionic in nature.