DOI QR코드

DOI QR Code

Flexural Characteristics of Reinforced Polymer Concrete T-Beams Strengthened with GFRP

GFRP 보강 철근 폴리머 콘크리트 T형 보의 휨 특성

  • Jin, Nan-Ji (Dong Il Engineering Consultants Co., Ltd.) ;
  • Hwang, Hae-Geun (Dept. of Regional Infrastructure Engineering, Kangwon National University) ;
  • Yeon, Jung-Heum (Center for Transportation Research at The University of Texas at Austin)
  • Received : 2012.04.26
  • Accepted : 2012.07.03
  • Published : 2012.10.31

Abstract

In this study, the flexural characteristics of reinforced polymer concrete T-beams strengthened with GFRP, typically used for bridges and parking structures, are investigated. A method to determine the flexural failure mode of reinforced polymer concrete T-beams comprised of compression failure (CF), tension failure (TF), and fiber sheet failure (FF) for different levels of GFRP strengthening is proposed. Moreover, the present study provides a formula to calculate the design flexural strength for each failure mode. In reinforced polymer concrete T-beams strengthened with GFRP, an ideal failure mode can be achieved when the failure occurs in the following order: 1) yield of steel reinforcement, 2) failure of GFRP, and 3) compression failure of concrete. In the case of FF mode, due to GFRP failure before the polymer concrete crushing in compression region, a concept of equivalent rectangular block based on the ultimate limit state of concrete should not be used. Thus, this study suggests an idealized stress-strain curve for polymer concrete and finds parameters for stress block, ${\alpha}$ and ${\beta}$ based on the strain distribution in polymer concrete. Furthermore, the present study suggests an aspect ratio of 2.5 by examining the compressive stress distribution and design flexural strength characteristics for different aspect ratio of T-beams. This study also provides a design flexural strength formula, and validates its acceptability based on experiment and theoretical analysis.

이 연구는 교량이나 주차장 건물 등에 적용이 가능한 GFRP 보강 철근 폴리머 콘크리트 T형 보의 휨 특성에 관한 연구로서 GFRP 보강 수준에 따른 압축파괴(compression failure: CF), 인장파괴(tension failure: TF) 및 GFRP 보강재의 파괴(fiber sheet failure: FF) 등 파괴모드의 판단과 결정방법을 제시하고, 파괴모드별 설계휨강도 산정식을 제시하였다. GFRP 보강 철근콘크리트 보에서는 FF, TF, CF 등 3가지 파괴모드 중에서 철근항복 ${\rightarrow}$ GFRP 파단 ${\rightarrow}$ 압축측 콘크리트 파괴의 순으로 진행되는 FF 파괴모드가 가장 이상적이다. FF 파괴모드의 경우 압축측 폴리머 콘크리트가 극한변형률(${\varepsilon}_{cu}$)에 도달하기 전에 GFRP가 먼저 파단되므로 콘크리트의 극한상태를 기반으로 하는 기존의 등가직사각형 응력블럭의 개념을 적용할 수 없다. 따라서 이 연구에서는 폴리머 콘크리트의 특성에 부합되는 이상화된 폴리머 콘크리트의 압축응력-변형률 곡선을 제안하고, 폴리머 콘크리트의 변형률을 기반으로 하여 응력블럭 매개변수 ${\alpha}$, ${\beta}$를 도출하였다. 또한 T형 보의 형상비에 따른의 압축응력 분포 및 설계휨강도 특성을 규명하고 적정한 형상비를 2.5로 제시하였으며, GFRP 보강재의 두께 및 높이에 따른 설계휨강도 산정식을 제시하고 그 식의 적정성을 실험과 이론해석에 의해 입증하였다.

Keywords

References

  1. Liu, Q., Shaw, M. Y., Parnas, R. S., and McDonnell, A. M., "Investigation of Basalt Fiber Composite Mechanical Properties for Applications in Transportation," Polymer Composites, Vol. 27, No. 1, 2006, pp. 41-48. https://doi.org/10.1002/pc.20162
  2. Chandra, S. and Ohama, Y., Polymers in Concrete, CRC Press, Inc., Boca Raton, FL, USA, 1994, 204 pp.
  3. ACI 440R-96(1996), State-of-the Art Report on Fiber Reinforced Plastic (FRP) Reinforced for Concrete Structures, American Concrete Institute (ACI Committee 440), Farmington Hills, Michigan, USA, 68 pp.
  4. ISIS CANADA, "Strengthening Reinforced Concrete Structure with Externally Bonded Fiber Reinforced Polymers," Design Manual, No. 4, Winnipeg, Canada, 2001, 210 pp.
  5. Teng, J. G., Chen,. J. F., Smith, S. T., and Lam, L., FRP Strengthened RC Structures, John Wiley & Sons, Ltd., The Atrium Southern Gate Chichester West Sussex PO 19 8SQ, England, 2002, 266 pp.
  6. Park, T. H. and Bu, J. S., "Flexural Analysis of RC Beams Strengthened with Soffit and Web Fiber Sheets," KSCE Journal of Civil Engineering, Vol. 22, No. 5-A, 2002. pp. 1045-1057.
  7. Park, T. H. and Lee, G. C., "Flexural Strength Analysis of RC T-Beams Strengthened Using Fiber Sheets," Journal of the Korea Concrete Institute, Vol. 15, No. 2, 2003, pp. 234-245. https://doi.org/10.4334/JKCI.2003.15.2.234
  8. Kim, J. Y., Kim, K. S., Park, S. K., and Lee, Y. J., "Behavior and Ductility of Reinforced Concrete Beams Strengthened by CFRP," Journal of the Korea Concrete Institute, Vol. 19, No 2, 2007, pp. 225-231. https://doi.org/10.4334/JKCI.2007.19.2.225
  9. You, Y. C., Choi, K. S., and Kim, K. H., "An Experimental Study to Prevent Debonding Failure of RC Beams Strengthened with GFRP Sheets," Journal of the Korea Concrete Institute, Vol. 19, No. 6, 2007, pp. 677-684. https://doi.org/10.4334/JKCI.2007.19.6.677
  10. Kim, S. H., Kim, K. S., Han, K. B., Song, S. K., and Park, S. K., "A Prediction of the Long-Term Deflection of RC Beams Externally Bonded with CFRP and GFRP," Journal of the Korea Concrete Institute, Vol. 20, No. 6, 2008, pp. 765-772. https://doi.org/10.4334/JKCI.2008.20.6.765
  11. Yeon, K. S., "Stress-Strain Curve Modeling and Length Effect of Polymer Concrete Subjected to Flexural Compressive Stress," Journal of Applied Polymer Science, Vol. 114, No. 6, 2009, pp. 3819-3826. https://doi.org/10.1002/app.30992
  12. MacGregor, J. C., Reinforced Concrete Mechanics and Design, Third Edition, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1998, 939 pp.
  13. EI-Mihilmy, M. T. and Tedesco, J. W., "Analysis of Reinforced Concrete Beams Strengthened with FRP Laminates," Journal of Structural Engineering, ASCE, Vol. 126, No. 6, pp. 684-691. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:6(684)
  14. Teng, J. G., Lam, L., Chan, W., and Wang, J. S., "Retrofitting of Deficient RC Cantilever Slabs Using GFRP Strips," Journal of Composites for Construction, ASCE, Vol. 4, No. 2, 2000, pp. 75-84. https://doi.org/10.1061/(ASCE)1090-0268(2000)4:2(75)
  15. Whitney, C. S., "Plastic Theory of Reinforced Concrete Design," Proceedings of the ASCE, December 1940, Transactions ASCE, Vol. 10-7, 1942, 251, 326 pp.
  16. Hognestad, E., "A Study of Combined Bending and Axial Strength Design," Journal of ACI, Vol. 27, No. 8, 1961, pp. 875-926.
  17. Mattock, A. H., Kriz, L. B., and Hognestad, E., "Rectangular Concrete Stress Distribution in Ultimate Strength Design," Journal Proceedings, ACI, Vol. 57, No. 2, 1961, pp. 875- 928.
  18. ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-99) and Commentary (ACI 318R-99), American Concrete Institute, Farmington Hills, 1999, 391 pp.