DOI QR코드

DOI QR Code

Preparation of Cellulose Nanofibers from Domestic Plantation Resources

국내 자생 식물자원을 이용한 셀룰로오스 나노섬유의 제조 기술 개발

  • Jang, Jae-Hyuk (College of Forest & Environmental Sciences, Kangwon National University) ;
  • Kwon, Gu-Joong (College of Forest & Environmental Sciences, Kangwon National University) ;
  • Kim, Jong-Ho (College of Forest & Environmental Sciences, Kangwon National University) ;
  • Kwon, Sung-Min (Korea Forest Research Institute) ;
  • Yoon, Seung-Lak (Department of Interior Materials Engineering, Gyeongnam National University of Science and Technology) ;
  • Kim, Nam-Hun (College of Forest & Environmental Sciences, Kangwon National University)
  • 장재혁 (강원대학교 산림환경과학대학) ;
  • 권구중 (강원대학교 산림환경과학대학) ;
  • 김종호 (강원대학교 산림환경과학대학) ;
  • 권성민 (국립산림과학원) ;
  • 윤승락 (경남과학기술대학교 인테리어재료공학과) ;
  • 김남훈 (강원대학교 산림환경과학대학)
  • Received : 2012.01.27
  • Accepted : 2012.05.14
  • Published : 2012.05.25

Abstract

This research has been carried out to investigate the characteristics of cellulose nanofibers manufactured from domestic lignocellulosic materials by mechanical grinding method. The continuous grinding process was effective for loosening cell wall structure, with increasing grinding time, much smaller nanofibers were observed. Filtration time was linearly increased with increasing grinding time for all experimental materials. Relative crystallinity of cellulose was not changed by grinding process, but increased by delignification treatment. Tensile property of fiber sheets was drastically improved with increasing grinding time. Fibers sheets obtained from delignified cone stalks showed an excellent tensile strength. Consequently, it is considered that this study presented some effective information for manufacturing cellulose nanofibers with domestic plantation resources.

본 연구에서는 국내산 리그노셀룰로오스 자원을 이용하여 기계적 처리를 통해 나노섬유를 제조 후, 형태학적 특성 및 고강도 시트로의 응용 가능성을 평가하였다. 그 결과, 연속식 분쇄 처리는 세포벽의 구조를 느슨하게하고 분쇄 소요 시간이 증가함에 따라 나노스케일에 가까운 섬유가 관찰되었다. 재료의 미립화 정도를 증명하는 여수시간은 모든 공시재료에서 분쇄 소요시간이 증가함에 따라 직선적인 증가 경향을 나타내었다. 셀룰로오스의 상대결정화는 기계적인 해섬처리 정도에 따른 차이를 보이지 않았으나 탈리그닌 처리에 의해 크게 증가하였다. 셀룰로오스 나노섬유 시트는 기계적인 분쇄 소요시간이 증가함에 따라 인장강도가 증가하였고 옥수수줄기를 이용한 시트에서 특히 높은 인장강도가 측정되었다. 상기와 같은 결과는 국내 자생 식물자원을 활용한 셀룰로오스 나노섬유 제조 기술의 유용한 기초자료로 활용될 수 있을 것으로 판단된다.

Keywords

References

  1. 김남훈, 황원중, 권구중, 권성민, 이명구, 조준형. 2006. 국내에서 생장한 Kenaf (양마)의 해부 및 물리적 특성. 목재공학 34(3): 1-7.
  2. 이선영, 전상진, 도금현, 이수, 김병훈, 민경선, 김승찬, 허윤석. 2011. 셀룰로오스 나노섬유의 제조 및 응용: 고강도 나노종이와 고분자복합필름. 목재공학 39(3): 197-205. https://doi.org/10.5658/WOOD.2011.39.3.197
  3. Berglund, L. 2005. Cellulose-based nanocomposites. In A.K. Mohanty, M. Misra, and L. Drzal (Eds). Natural fibers, biopolymers and biocomposites. Boca Raton, Florida: CRC Press. pp. 807-832.
  4. Bhatnagar, A. and M. Sain. 2005. Processing of Cellulose-Nanofiber Reinforced Composites, J. Reinf. Plast. Comp. 24: 1259-1268. https://doi.org/10.1177/0731684405049864
  5. Bondeson, D., A. Mathew, and K. Oksman. 2009. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hyrolysis. Cellulose 13: 171-180.
  6. Chakraborty, A., M. Sain, and M. Kortschot. 2005. Cellulose micriofibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59: 102-107.
  7. Chang, F., S. H. Lee, K. Toba, A. Nagatani, and T. Endo. 2011. Bamboo nanofiber preparation by HCW and grinding treatment and its application for nanocomposite. Wood Sci Technol. DOI 10.1007/s00226-011-0416-0.
  8. Edgar, C. D. and D. G. Gray. 2003. Smooth model cellulose I surfaces from nanocrystalline cellulose. Cellulose 10: 299--306. https://doi.org/10.1023/A:1027333928715
  9. Eichhorn, S. J., A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs. 2010. Review: current international research into cellulose nanofibres and nanocomposites. Journal of Materials Science 45: 1-33. https://doi.org/10.1007/s10853-009-3874-0
  10. Fengel, D. and G. Wegner. 1983. Wood: Chemistry, Ultrastructure, Reactions. Verlag Kessel: Remagen, Germany.
  11. Henriksson, M., G. Henriksson, L. A. Berglund, and T. Lindstrom. 2007. An enviromentally friendly method for enzyme‐assisted preparation of microfibrillated cellulose (MFC) nanofibers. European Polymer Journal 43: 3434-3441. https://doi.org/10.1016/j.eurpolymj.2007.05.038
  12. Herrick, F. M., R. L. Casebier, J. Hamilton, and K. R. Sandberg, 1983. Microfibrillated cellulose: Morphology and accessibility. Journal of Applied Polymer Science: Applied Polymer Symposium 37: 797-813.
  13. Lee, S.-Y., D. J. Mohan, I.-A. Kagn, G.-H. Doh, S. Lee, S.-O. Han. 2009. Nanocellulose reinforced PVA composite films: Effect of acid treatment and filler loading. Fibers and Polymers 10(1): 77-82. https://doi.org/10.1007/s12221-009-0077-x
  14. Mustată, A. 1997. Factors influencing fiber-fiber friction in the case of bleached flax. Cellulose Chemistry Technology 31: 405-413.
  15. Oksman, K., A. P. Mathew, D. Bondeson, and I. Kvien. 2006. Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Composites Science and Technology 66: 2776-2784. https://doi.org/10.1016/j.compscitech.2006.03.002
  16. Segal, L., J. J. Creely, A. E. Jr. Martin, and C. M. Conrad. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Tex Res J. 29: 786-794. https://doi.org/10.1177/004051755902901003
  17. Sturcova, A., G. R. Davies, and S. J. Eichhorn. 2005. The elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6(2): 1055-1061. https://doi.org/10.1021/bm049291k
  18. Wang, B. and M. Sain. 2006. Cellulose nanocomposites: processing, characterization and properties, Oksman K., Sain M. Ed., ACS Symposium Series 938, Washington DC. pp 187-208.
  19. Wang, B., M. Sain, and K. Oksman. 2007. Study of structural morphology of Hemp fiber from the micro to the nanoscale. Appl Compos Mater. 14: 89-103. https://doi.org/10.1007/s10443-006-9032-9
  20. Wang, S. and Q. Cheng. 2009. A Novel Process to Isolate Fibrils from Cellulose Fibers by High-Intensity Ultrasonication. Part I. Process optimization. Journal of Applied Polymer Science 113 (2): 1270-1275. https://doi.org/10.1002/app.30072

Cited by

  1. Effect of enzyme beating on grinding method for microfibrillated cellulose preparation as a paper strength enhancer vol.24, pp.8, 2017, https://doi.org/10.1007/s10570-017-1368-9
  2. THE BOLSHEVIST PARTY ORGANIZATION AS PART OF THE SOVIET COMMNITY IN THE NORTHERN MANCHURIA (1924 - 1931 гг.) vol.2, pp.11, 2012, https://doi.org/10.17084/2012.III-2(11).5
  3. Preparation of Lignocellulose Nanofibers from Korean White Pine and Its Application to Polyurethane Nanocomposite vol.42, pp.6, 2014, https://doi.org/10.5658/WOOD.2014.42.6.700
  4. Enzyme Activity and Beating Properties for Preparation of MicroFibrillated Cellulose(MFC) vol.47, pp.1, 2015, https://doi.org/10.7584/ktappi.2015.47.1.059
  5. Micro-Fibrillated Cellulose Preparation with Enzyme Beating Pretreatment and Effect on Paper Strength Improvement vol.47, pp.6, 2015, https://doi.org/10.7584/ktappi.2015.47.6.057
  6. Effect of pMDI as Coupling Agent on The Properties of Microfibrillated Cellulose-reinforced PBS Nanocomposite vol.42, pp.4, 2014, https://doi.org/10.5658/WOOD.2014.42.4.483
  7. Delignification Effect on Properties of Lignocellulose Nanofibers from Korean White Pine and Their Nanopapers vol.43, pp.1, 2015, https://doi.org/10.5658/WOOD.2015.43.1.9
  8. Beating Properties with Swelling agent and Concentration for Preparation of MicroFibrillated Cellulose (MFC) vol.47, pp.3, 2015, https://doi.org/10.7584/ktappi.2015.47.3.003