• Title/Summary/Keyword: Fiber Bragg grating sensors

Search Result 196, Processing Time 0.021 seconds

A Fiber Laser Spectrometer Demodulation of Fiber Bragg Grating Sensors for Measurement Linearity Enhancement

  • Kim, Hyunjin;Song, Minho
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.312-316
    • /
    • 2013
  • A novel fiber-optic sensor system is suggested in which fiber Bragg grating sensors are demodulated by a wavelength-sweeping fiber laser source and a spectrometer. The spectrometer consists of a diffraction grating and a 512-pixel photo-diode array. The reflected Bragg wavelength information is transformed into spatial intensity distribution on the photo-diode array. The peak locations linearly correspond to the Bragg wavelengths, regardless of the nonlinearities in the wavelength tuning mechanism of the fiber laser. The high power density of the fiber laser enables obtaining high signal-to-noise ratio outputs. The improved demodulation characteristics were experimentally demonstrated with a fiber Bragg grating sensor array with 5 gratings. The sensor outputs were in much more linear fashion compared with the conventional tunable band-pass filter demodulation. Also it showed advantages in signal processing, due to the high level of photo-diode array signals, over the broadband light source system, especially in measurement of fast varying dynamic physical quantities.

Protection Method for Diameter-downsized Fiber Bragg Gratings for Highly Sensitive Ultraviolet Light Sensors

  • Seo, Gyeong-Seo;Ahn, Tae-Jung
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.221-225
    • /
    • 2018
  • We suggested the use of miniature hollow glass tubes having high ultraviolet (UV) transmission characteristics for the protection of optical-fiber-type UV sensors. We have recently proposed a highly sensitive optical sensor in the UV spectral range, using a fiber Bragg grating (FBG) coated with an azobenzene polymer as the photoresponsive material. In this study, we used UV-transparent miniature glass tubes to protect the etched FBG with the azobenzene polymer coating. This technique will be very useful for protecting various fiber-based UV sensors.

Development of submersion sensors using multi-mode fibers spliced with a fiber Bragg grating (다중모드 광섬유 융착형 침수 감지 센서 개발)

  • Sohn, Kyung-Rak;Key, Kwang-Hyun;Shim, Joon-Hwan;Cho, Seok-Je
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.925-931
    • /
    • 2009
  • This paper reports a preliminary experimental investigation and characterization of an optical fiber-based submersion sensor system for applications in water flooding and leakage. The sensor system comprises a multi-mode fiber spliced with fiber Bragg grating and an intensity-based interrogator. Submersion tests were conducted in water-air and Glycerin-air environments. By the refractive index of the fiber-probe surrounding materials, the reflectance and the detecting power level is determined. When the probe is dipped into the water, the optical output power dramatically decreases from -7.5dBm to -17.5dBm. But, the center of Bragg wavelength is not affected in spite of external material changes. Temporal response characteristics of the sensor system is investigated to verify the real-time reaction. When the probe is immersed into the liquid, there is no transition time.

Fiber Bragg Grating Strain Sensing in Reinforced Concrete Beams (광섬유 BRAGG GRATING SENSOR를 이용한 철근 콘크리트 보의 변형 측정)

  • 김지상;이상배;김남식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.423-428
    • /
    • 2001
  • Fiber Bragg Grating sensors currently attract a great deal of attentions, mainly due to their potentials in health monitoring for civil structures and composite materials. In this experimental study, the strains of reinforced concrete beams were measured to failure In order to verify the applicability of FBG(Fiber Bragg Grating) sensors. The FBG sensors were directly buried in concrete and attached to re-bars at the time of fabrication. In this experiment, the changes of strains in concrete and re-bars were successfully measured as the movement in wavelength of light signals. The FBG sensors may be a very effective tool to investigate the behavior inside of reinforced concrete structures.

  • PDF

Hydrogen Sensor Based on Palladium-Attached Fiber Bragg Grating

  • Lee, Sang-Mae;Sirkis, Jim-S.
    • Journal of the Optical Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.69-73
    • /
    • 1999
  • This paper demonstrated the performance of a palladium wire hydrogen sensor based on a fiber Bragg grating as a means of developing a quasi-distributed hydrogen sensor network capable of operating at cryogenic temperatures. The new approach employing a fiber Bragg grating based palladium hydrogen sensor described in this study is advantageous over other traditional hydrogen sensors because of the multiplexing capability of fiber Bragg gratings. The sensitivity of the hydrogen sensor at room temperature is approximately 2.5 times that of the hydrogen sensor at cryogenic temperatures.

Development of Measuring Data System of Reinforced Concrete Beam Under Cyclic Loading Using Fiber Bragg Grating Sensors (FBG센서를 이용한 반복하중을 받는 RC보의 계측 시스템 개발)

  • Kwak Kae-Hwan;Jang Hwa-Sup;Jung Hyun-Soo;Yang Dong-Oun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.440-447
    • /
    • 2005
  • In this study, strain measurement and its applicability to estimated deflection curve using fiber bragg grating sensors was conducted. For this purpose, reinforced concrete beams were made and sensors were attached both on the surface of the beams and inside steel. Two types of sensors were used to detect strain on the beams and steel : fiber bragg grating sensors, electric resistance strain sensors. So fatigue test is done with measuring strain of specimen. In addition, this experiments estimates the optimum deflection curve that converts strain curve data measured by FBG sensors into deflection.

  • PDF

Measurement of Material Properties of Composites for High Temperature using Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서를 이용한 고온용 복합재의 물성 측정)

  • 강동훈;박상욱;김수현;김천곤;홍창선
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.31-36
    • /
    • 2003
  • Recently, composite materials are widely used for nozzle, pressure vessel, skins of satellite and many structures under condition of high temperature due to good thermal characteristics such as low CTE, heat-resistance, etc. Fiber optic sensors, especially FBG(fiber Bragg grating) sensors, can be a good counterproposal of strain gages for the measurement of material properties of composites under high temperature. In this research, T700/Epoxy specimens with embedded FBG sensors were fabricated and tested at the Instron with thermal chamber from room temperature to $400^{\circ}C$. The effects of embedding optical fiber on material properties were also verified. And, the experimental results were discussed and analyzed by microphotographs of the composite specimen.

  • PDF

The Measurement of Concrete Deformations at Early Age using Fiber-Optic Bragg Grating Sensors (광섬유 GRATING SENSOR를 이용한 초기재령 콘크리트의 변형 측정)

  • 김지상;이상배;김남식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1238-1241
    • /
    • 2000
  • The deformations of concrete specimens were measured at early at early ages, in order to verify the applicability of FBG(Fiber Bragg Grating) sensors. The FBG sensors were directly buried at various locations in the beam-type RC specimens at the time of fabrication. In this experiment, the changes of strains in concrete at early age were successfully measured as the movement in wavelength of light signals. The FBG sensors may be a very effective tool to investigate the mechanical/thermal behavior inside of concrete structures.

  • PDF

Health monitoring of carbon fiber-reinforced polymer composites in γ-radiation environment using embedded fiber Bragg grating sensors

  • Jing Zhong;Feida Chen;Yuehao Rui;Yong Li;Xiaobin Tang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3039-3045
    • /
    • 2023
  • Fiber-reinforced polymer (FRP) composites are considered suitable candidates for structural materials of spacecrafts due to their excellent properties of high strength, light weight, and corrosion resistance. An online health monitoring method for FRP composites must be applied to space structures. However, the application of existing health monitoring methods to space structures is limited due to the harsh space environment. Here, carbon fiber-reinforced polymer (CFRP) composites embedded with fiber Bragg grating (FBG) sensors were prepared to explore the feasibility of strain monitoring using embedded FBG sensors in γ-radiation environment. The analysis of the influence of radiation on the strain monitoring demonstrated that the embedded FBG can be successfully applied to the health monitoring of FRP composites in radiation environment.

Strain Sensitivity of Fiber Optic Bragg Grating Sensor (광섬유 브래그 격자 센서의 변형률 감지도)

  • Kwon, Il-Bum;Choi, Man-Yong;Kim, Min-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.237-243
    • /
    • 1999
  • Recently, there has been considerable interest in the development of fiber-optic sensors based on fiber Bragg gratings (FBGs), which can be made into Ge-doped fiber's core by UV phase mask or holographic methods. A good sensitivity and small size of this sensor make it an ideal candidate for distributed sensing in smart structures or other structural monitoring applications. In this study, fiber optic Bragg grating sensor, which could be applied to measure the absolute strains, was constructed and the strain sensitivity of this sensor was investigated in order to apply to the structural health monitoring. Fiber Fabry-Perot (FFP) filter has been used to detect the optical signals instead of optical spectrum analyzer. It has been convenient to determine the structural strains from the output signal of FBGs. The fiber optic Bragg grating sensor was attached on the aluminum beam near the electrical strain gage to measure the same strain. The relationship between strain and fiber signal was linearly fitted. The strain sensitivity of the fiber optic Bragg grating sensor was determined as $l.57{\mu}{\varepsilon}/{\mu}sec$ from the aluminum beam test.

  • PDF