• Title/Summary/Keyword: Feynman

Search Result 151, Processing Time 0.026 seconds

MULTIPLE Lp ANALYTIC GENERALIZED FOURIER-FEYNMAN TRANSFORM ON A FRESNEL TYPE CLASS

  • Chang, Seung Jun;Lee, Il Yong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.1
    • /
    • pp.79-99
    • /
    • 2006
  • In this paper, we define a class of functional defined on a very general function space $C_{a,b}[0,T]$ like a Fresnel class of an abstract Wiener space. We then define the multiple $L_p$ analytic generalized Fourier-Feynman transform and the generalized convolution product of functionals on function space $C_{a,b}[0,T]$. Finally, we establish some relationships between the multiple $L_p$ analytic generalized Fourier-Feynman transform and the generalized convolution product for functionals in $\mathcal{F}(C_{a,b}[0,T])$.

  • PDF

FOURIER-FEYNMAN TRANSFORMS FOR FUNCTIONALS IN A GENERALIZED FRESNEL CLASS

  • Yoo, Il;Kim, Byoung-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.75-90
    • /
    • 2007
  • Huffman, Park and Skoug introduced various results for the $L_p$ analytic Fourier-Feynman transform and the convolution for functionals on classical Wiener space which belong to some Banach algebra S introduced by Cameron and Strovic. Also Chang, Kim and Yoo extended the above results to an abstract Wiener space for functionals in the Fresnel class F(B) which corresponds to S. Recently Kim, Song and Yoo investigated more generalized relationships between the Fourier-Feynman transform and the convolution product for functionals in a generalized Fresnel class $F_{A_1,A'_2}$ containing F(B). In this paper, we establish various interesting relationships and expressions involving the first variation and one or two of the concepts of the Fourier-Feynman transform and the convolution product for functionals in $F_{A_1,A_2}$.

RELATIONSHIPS BETWEEN INTEGRAL TRANSFORMS AND CONVOLUTIONS ON AN ANALOGUE OF WIENER SPACE

  • Cho, Dong Hyun
    • Honam Mathematical Journal
    • /
    • v.35 no.1
    • /
    • pp.51-71
    • /
    • 2013
  • In the present paper, we evaluate the analytic conditional Fourier-Feynman transforms and convolution products of unbounded function which is the product of the cylinder function and the function in a Banach algebra which is defined on an analogue o Wiener space and useful in the Feynman integration theories and quantum mechanics. We then investigate the inverse transforms of the function with their relationships and finally prove that th analytic conditional Fourier-Feynman transforms of the conditional convolution products for the functions, can be expressed in terms of the product of the conditional Fourier-Feynman transforms of each function.

ANALYTIC FOURIER-FEYNMAN TRANSFORM AND CONVOLUTION OF FUNCTIONALS IN A GENERALIZED FRESNEL CLASS

  • Kim, Byoung Soo;Song, Teuk Seob;Yoo, Il
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.481-495
    • /
    • 2009
  • Huffman, Park and Skoug introduced various results for the $L_{p}$ analytic Fourier-Feynman transform and the convolution for functionals on classical Wiener space which belong to some Banach algebra $\mathcal{S}$ introduced by Cameron and Storvick. Also Chang, Kim and Yoo extended the above results to an abstract Wiener space for functionals in the Fresnel class $\mathcal{F}(B)$ which corresponds to $\mathcal{S}$. Moreover they introduced the $L_{p}$ analytic Fourier-Feynman transform for functionals on a product abstract Wiener space and then established the above results for functionals in the generalized Fresnel class $\mathcal{F}_{A1,A2}$ containing $\mathcal{F}(B)$. In this paper, we investigate more generalized relationships, between the Fourier-Feynman transform and the convolution product for functionals in $\mathcal{F}_{A1,A2}$, than the above results.

  • PDF

Note on the generalized Fourier-Feynman transform on function space (함수공간에서의 일반화된 푸리에-파인만 변환에 관한 고찰)

  • Chang, Seung-Jun
    • Journal for History of Mathematics
    • /
    • v.20 no.3
    • /
    • pp.73-90
    • /
    • 2007
  • In this paper, we define a generalized Feynman integral and a generalized Fourier-Feynman transform on function space induced by generalized Brownian motion process. We then give existence theorems and several properties for these concepts. Finally we investigate relationships of the Fourier transform and the generalized Fourier-Feynman transform.

  • PDF

$L_1$ analytic fourier-feynman transform on the fresnel class of abstract wiener space

  • Ahn, Jae-Moon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.99-117
    • /
    • 1998
  • Let $(B, H, p_1)$ be an abstract Wiener space and $F(B)$ the Fresnel class on $(B, H, p_1)$ which consists of functionals F of the form : $$ F(x) = \int_{H} exp{i(h,x)^\sim} df(h), x \in B, $$ where $(\cdot, \cdot)^\sim$ is a stochastic inner product between H and B, and f is in $M(H)$, the space of complex Borel measures on H. We introduce an $L_1$ analytic Fourier-Feynman transforms for functionls in $F(B)$. Furthermore, we introduce a convolution on $F(B)$, and then verify the existence of the $L_1$ analytic Fourier-Feynman transform for the convolution product of two functionals in $F(B)$, and we establish the relationships between the $L_1$ analytic Fourier-Feynman tranform of the convolution product for two functionals in $F(B)$ and the $L_1$ analytic Fourier-Feynman transforms for each functional. Finally, we show that most results in [7] follows from our results in Section 3.

  • PDF

A REPRESENTATION FOR AN INVERSE GENERALIZED FOURIER-FEYNMAN TRANSFORM ASSOCIATED WITH GAUSSIAN PROCESS ON FUNCTION SPACE

  • Choi, Jae Gil
    • The Pure and Applied Mathematics
    • /
    • v.28 no.4
    • /
    • pp.281-296
    • /
    • 2021
  • In this paper, we suggest a representation for an inverse transform of the generalized Fourier-Feynman transform on the function space Ca,b[0, T]. The function space Ca,b[0, T] is induced by the generalized Brownian motion process with mean function a(t) and variance function b(t). To do this, we study the generalized Fourier-Feynman transform associated with the Gaussian process Ƶk of exponential-type functionals. We then establish that a composition of the Ƶk-generalized Fourier-Feynman transforms acts like an inverse generalized Fourier-Feynman transform.

A CLASS OF THE OPERATOR-VALUED FEYNMAN INTEGRAL

  • Ahn, Byung-Moo
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.569-579
    • /
    • 1997
  • We investigate the existence of the operator-valued Feynman integral when a Wiener functional is given by a Fourier transform of complex Borel measure.

  • PDF

Learning from an Expert Teacher: Feynman's Teaching of Gravitation as an Examplar

  • Park, Jiyun;Lee, Gyoungho;Kim, Jiwon;Treagust, David F.
    • Journal of Science Education
    • /
    • v.43 no.1
    • /
    • pp.173-193
    • /
    • 2019
  • An expert teachers' instruction can be helpful to other teachers because good teaching effectively guides students to develop meaningful learning. Feynman is an excellent physics lecturer as well as one of the greatest physicists of the 20th century who presented and explained physics with his unique teaching style based on his great store of knowledge. However, it is not easy to capture and visualize teaching because it is not only the complex phenomena interrelated to various factors with the content to be taught but also the tacit representation. In this study, the framework of knowledge & belief based on the integrated mental model theory was used as a tool to capture and visualize complex and tacit representation of Feynman's teaching of 'The theory of gravitation,' a chapter in The Feynman Lectures on Physics. Feynman's teaching was found to go beyond the transmission of physics concepts by showing that components of the framework of knowledge & belief were effectively intertwined and integrated in his teaching and the storyline was well-organized. On the basis of these discussions, the implications of Feynman's teaching analyzed within the framework of knowledge & belief for physics teacher education are derived. Finally, the characteristics of the framework of knowledge & belief as tools for the analysis of teaching are presented.

TRANSFORMS AND CONVOLUTIONS ON FUNCTION SPACE

  • Chang, Seung-Jun;Choi, Jae-Gil
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.397-413
    • /
    • 2009
  • In this paper, for functionals of a generalized Brownian motion process, we show that the generalized Fourier-Feynman transform of the convolution product is a product of multiple transforms and that the conditional generalized Fourier-Feynman transform of the conditional convolution product is a product of multiple conditional transforms. This allows us to compute the (conditional) transform of the (conditional) convolution product without computing the (conditional) convolution product.