• 제목/요약/키워드: Ferroelectricity/ferroelectric oxides

검색결과 8건 처리시간 0.017초

초교환 상호작용 제어를 통해 강유전 BiFeO3-BaTiO3 시스템에서 유도된 상온 강자성 거동 (Room-Temperature Ferromagnetic Behavior in Ferroelectric BiFeO3-BaTiO3 System Through Engineered Superexchange Path)

  • 고누리;조재현;장종문;조욱
    • 한국전기전자재료학회논문지
    • /
    • 제34권5호
    • /
    • pp.386-392
    • /
    • 2021
  • Multiferroics exhibiting the coexistence and a possible coupling of ferromagnetic and ferroelectric order are attracting widespread interest in terms of academic interests and possible applications. However, room-temperature single-phase multiferroics with soft ferromagnetic and displacive ferroelectric properties are still rare owing to the contradiction in the origin of ferromagnetism and ferroelectricity. In this study, we demonstrated that sizable ferromagnetic properties are induced in the ferroelectric bismuth ferrite-barium titanate system simply by introducing Co ions into the A-site. It is noted that all modified compositions exhibit well-saturated magnetic hysteresis loops at room temperature. Especially, 70Bi0.95Co0.05FeO3-30Ba0.95Co0.05TiO3 manifests noticeable ferroelectric and ferromagnetic properties; the spontaneous polarization and the saturation magnetization are 42 µC/cm2 and 3.6 emu/g, respectively. We expect that our methodology will be widely used in the development of perovskite-structured multiferroic oxides.

원자층증착법으로 증착된 강유전성 플루오라이트 구조 강유전체 박막의 불순물 효과 (A brief review on the effect of impurities on the atomic layer deposited fluorite-structure ferroelectrics)

  • 이동현;양건;박주용;박민혁
    • 한국표면공학회지
    • /
    • 제53권4호
    • /
    • pp.169-181
    • /
    • 2020
  • The ferroelectricity in emerging fluorite-structure oxides such as HfO2 and ZrO2 has attracted increasing interest since 2011. Different from conventional ferroelectrics, the fluorite-structure ferroelectrics could be reliably scaled down below 10 nm thickness with established atomic layer deposition technique. However, defects such as carbon, hydrogen, and nitrogen atoms in fluorite-structure ferroelectrics are reported to strongly affect the nanoscale polymorphism and resulting ferroelectricity. The characteristic nanoscale polymorphism and resulting ferroelectricity in fluorite-structure oxides have been reported to be influenced by defect concentration. Moreover, the conduction of charge carriers through fluorite-structure ferroelectrics is affected by impurities. In this review, the origin and effects of various kinds of defects are reviewed based on existing literature.

Ferroelectric Phase Transition of Lead Free (1-x)(Na0.5K0.5)NbO3-xLiNbO3 Ceramics

  • Park, Jong-Ho;Park, Hui-Jin;Choi, Byung-Chun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권6호
    • /
    • pp.297-300
    • /
    • 2012
  • Lead-free (1-x)$(Na_{0.5}K_{0.5})NbO_3-xLiNbO_3$, i.e., NKN-LNx (x=0.0, 0.1, 0.2, 0.3, 0.4 mol) was prepared using the conventional solid state reaction method. The effects of LN mixing on the ferroelectric properties of NKN-LNx ceramics were studied using a dielectric constant and P-E (Polarization-electric field) measurements. Ferroelectricity was observed in the composition for x approximately varying between 0.0 and 0.4. Minimum remanent polarization $2P_r=5C/cm^2$ was achieved in the composition for x = 0.2. The ferroelectric phase transition temperature $T_C$ increased with increasing LN content. The ferroelectric phase transition of NKN-LNx ($x{\geq}0.1$) is a second-order phase transition, and that of NKN-LNx ($x{\leq}0.2$) is a first-order phase transition. These results indicate that the ferroelectric phase transition temperature of NKN-LNx change from that of second-order to weak first-order phase transition according to the LN content.

Ni 도핑을 통한 정방성이 높은 벌크 PbTiO3 세라믹 합성 (Fabrication of Bulk PbTiO3 Ceramics with a High c/a Ratio by Ni Doping)

  • 선정우;조재현;조욱
    • 한국전기전자재료학회논문지
    • /
    • 제35권4호
    • /
    • pp.407-411
    • /
    • 2022
  • Bulk-sized PbTiO3 (PT), which is widely known as a high-performance ferroelectric oxide but cannot be fabricated into a monolithic ceramic due to its high c/a ratio, was successfully prepared with a high tetragonality by partially substituting Ni ions for Pb ions using a solid-state reaction method. We found that Ni-doped PT was well-fabricated as a bulk monolith with a significant c/a ratio of ~1.06. X-ray diffraction on as-sintered and crushed samples revealed that NiTiO3 secondary phase was present at the doping level of more than 2 at.%. Scanning electron microscopic study showed that NiTiO3 secondary phase grew on the surface of PT specimens regardless of the doping level possibly due to the evaporation of Pb during sintering. We demonstrated that an unconventional introduction of Ni ions into A-site plays a key role on the fabrication of bulk PT, though how Ni ion functions should be studied further. We expect that this study contributes to a further development of displacive ferroelectric oxides with a high c/a ratio.

Non-volatile Control of 2DEG Conductance at Oxide Interfaces

  • Kim, Shin-Ik;Kim, Jin-Sang;Baek, Seung-Hyub
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.211.2-211.2
    • /
    • 2014
  • Epitaxial complex oxide thin film heterostructures have attracted a great attention for their multifunctional properties, such as ferroelectricity, and ferromagnetism. Two dimensional electron gas (2DEG) confined at the interface between two insulating perovskite oxides such as LaAlO3/SrTiO3 interface, provides opportunities to expand various electronic and memory devices in nano-scale. Recently, it was reported that the conductivity of 2DEG could be controlled by external electric field. However, the switched conductivity of 2DEG was not stable with time, resulting in relaxation due to the reaction between charged surface on LaAlO3 layer and atmospheric conditions. In this report, we demonstrated a way to control the conductivity of 2DEG in non-volatile way integrating ferroelectric materials into LAO/STO heterostructure. We fabricated epitaxial Pb(Zr0.2Ti0.8)O3 films on LAO/STO heterostructure by pulsed laser deposition. The conductivity of 2DEG was reproducibly controlled with 3-order magnitude by switching the spontaneous polarization of PZT layer. The controlled conductivity was stable with time without relaxation over 60 hours. This is also consistent with robust polarization state of PZT layer confirmed by piezoresponse force microscopy. This work demonstrates a model system to combine ferroelectric material and 2DEG, which guides a way to realize novel multifunctional electronic devices.

  • PDF

BaTiO3 첨가에 따른 Bi1/2Na1/2TiO3-SrTiO3 무연 압전 세라믹스의 전기적 특성 및 상전이 거동 연구 (Electrical Properties and Phase Transition Behavior of Lead-Free BaTiO3-Modified Bi1/2Na1/2TiO3-SrTiO3 Piezoelectric Ceramics)

  • 강유빈;박재영;무클리사 아이샤 데비타;즈엉 짱 안;안창원;김병우;한형수;이재신
    • 한국전기전자재료학회논문지
    • /
    • 제35권5호
    • /
    • pp.516-521
    • /
    • 2022
  • We investigated the microstructure, crystal structure, dielectric, and elecromechanical strain properties of lead-free BaTiO3 (BT)-modified (Bi1/2Na1/2)TiO3-SrTiO3 (BNT-ST) piezoelectric ceramics. Samples were prepared by a conventional ceramic processing route. Temperature dependent dielectric properties confirmed that a phase transition from a nonergodic relaxor to an ergodic relaxor was induced when the BT concentration reached 1.5 mol%, interestingly, where the average grain size reached a maximum value of 4.5 ㎛. At the same time, enhanced electromechanical strain (Smax/Emax = 600 pm/V) was obtained. It is suggested that the induced ferroelectric-relaxor phase transition by the BT modification is responsible for the enhancement of electromechanical strain in 1.5 mol% BT-modified BNT-ST ceramics.

Investigation of Lattice Effects in Perovskites by $O-isotope^{18}$ Exchange

  • Itoh, Mitsuru;Mahesh, Rajappan;Wang, Ruiping
    • The Korean Journal of Ceramics
    • /
    • 제6권3호
    • /
    • pp.309-314
    • /
    • 2000
  • In the present study, preliminary experimental results of the change in the properties of perovskite-type oxides caused by the $^{18}O$- exchange have been reported. Two systems were selected for the exchange, (1) $ATiO_3$(A=Ca,Sr,Ba) and (2) manganese perovskite. The dielectric properties of isotope-exchanged $SrTi^{18}O_3$showed a drastic change from a quantum paraelectricity below 3K to ferroelectric-like behavior with a peak at 23K and an enhanced dielectric constant, 35000 at the peak. On the contrary, the $T_c$ for $BaTiO_3$was found to increase by 0.9K. The observed isotope shift of $T_c$ as well as $T_co$ for the manganese perovskites is correlated with the key parameters controlling the lattice such as $Mn^{3+}$ content, average ionic radius of the A-site cation <$r_A$> ad A-site ionic disorder $\sigma^2$.

  • PDF

반대칭 교환 상호작용을 갖도록 Fe-Site가 제어된 PbFe1/2Nb1/2O3의 강유전/자기적 특성 연구 (Investigation on Ferroelectric and Magnetic Properties of Pb(Fe1/2Nb1/2)O3 Fe-Site Engineered with Antisymmetric Exchange Interaction)

  • 박지훈;이주현;조재현;장종문;조욱
    • 한국전기전자재료학회논문지
    • /
    • 제35권3호
    • /
    • pp.297-302
    • /
    • 2022
  • We investigated the origin of magnetic behaviors induced by an asymmetric spin exchange interaction in Fe-site engineered lead iron niobate [Pb(Fe1/2Nb1/2)O3, PFN], which exhibits a room-temperature multiferroicity. The magnitude of spin exchange interaction was regulated by the introduced transition metals with a distinct Bohr magneton, i.e., Cr, Co, and Ni. All compositions were found to have a single-phase perovskite structure keeping their ferroelectric order except for Cr introduction. We discovered that the incorporation of each transition metal imposes a distinct magnetic behavior on the lead iron niobate system; antiferro-, hard ferro-, and soft ferromagnetism for Cr, Co, and Ni, respectively. This indicates that orbital occupancy and interatomic distance play key roles in the determination of magnetic behavior rather than the magnitude of the individual Bohr magneton. Further investigations are planned, such as X-ray absorption spectroscopy, to clarify the origin of magnetic properties in this system.