• Title/Summary/Keyword: Fermented soymilk

Search Result 38, Processing Time 0.031 seconds

Production of a Fermented Soymilk using a New Strain Leuconostoc mesenteroides KC51 Isolated from Kimchi (김치에서 분리한 Leuconostoc mesenteroides KC51을 이용한 대두 발효유의 제조)

  • Oh, Nam-Soon;In, Man-Jin
    • Applied Biological Chemistry
    • /
    • v.51 no.1
    • /
    • pp.88-91
    • /
    • 2008
  • 숙성 중인 김치에서 생육과 산 생성이 우수한 유산균을 분리하여 API 50 CHL kit로 확인하고 16S rDNA의 염기 서열을 분석한 결과 Leuconostoc mesenteroides로 동정되어 Leuconostoc mesenteroides KC51로 명명하였다. 대두에 10배의 증류수를 가하여 제조한 두유에 KC51 균주를 접종하고 $30^{\circ}C$에서 정치 배양한 결과, 생균수는 접종 후 9시간까지 급격히 증가하였으며 그 이후 완만하게 증가하여 배양 12시간에는 $2.70{\times}10^9$ CFU/g까지 증가하였다. 적정산도는 배양 12시간에 0.35%까지 증가하였으며,pH 는 pH 4.52까지 감소하였다. 이때 유기산 농도는 젖산과 초산의 함량이 각각 0.56%와 0.10%로 분석 되었다. 두유 발효액에서 Leuconostoc mesenteroides의 증식에 의한 점도의 증가는 관찰되지 않았으며, 관능적으로도 신맛을 제외한 항목에서 두유와 유사하였다. 또한 $4^{\circ}C$에서 두유 발효액은 2주일의 저장기간 동안 pH, 적정산도와 생균수의 변화는 미미하였다.

Influence of soymilk and skim milk on growth and antibacterial activity of lactic acid bacteria (유산균의 증식과 항균 활성에 관한 탈지유 및 두유의 영향)

  • Lim, Eun-Seo
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.258-267
    • /
    • 2019
  • The purpose of this study was to investigate the effect of lactic acid bacteria (LAB) on the growth and biogenic amines (BA) formation of Enterobacter aerogenes CIH05 in skim milk and soymilk. Lactobacillus acidophilus GK20, Lactobacillus paracasei GK74, and Lactobacillus plantarum GK81 isolated from mustard kimchi did not produce BA in the decarboxylation broth. L. paracasei GK74 exhibited the highest cell viability and antimicrobial compounds producing ability in fermented skim milk and soymilk samples, while the lowest producer was L. plantarum GK81. The production yield of lactic acid, hydrogen peroxide, and bacteriocin was dependent on the species of Lactobacillus and the type of culture medium. As LAB the number of viable cells of E. aerogenes CIH05 were higher in skim milk than in soymilk. When mixed culture with L. acidophilus GK20 and L. paracasei GK74 and treated with bacteriocin solution (300 AU/ml) obtained from these strains in milk media, the cell growth and cadaverine and histamine contents of E. aerogenes CIH05 were significantly (P < 0.05) lower than the respective values in control sample.

Changes of Phytochemicals and Antioxidant Activity during Fermentation of Brown Soymilk (갈색콩 두유의 젖산 발효 중 phytochemicals 및 항산화 활성 변화)

  • Hwang, Chung Eun;Lee, Byong Won;An, Min Ju;Lee, Hee Yul;Kim, Hyun Tae;Ko, Jong Min;Baek, In Youl;Cho, Kye Man
    • Journal of agriculture & life science
    • /
    • v.50 no.4
    • /
    • pp.157-167
    • /
    • 2016
  • The changes of total phenolic and isoflavone contents and antioxidant activities in of brown soymilk fermented by Lactobacillus plantarum P1201 were investigated. The brown soymilk proliferated the cell growth and reached about 11.55log cfu/g after fermentation for 60hr, while pH and titratable acidity ranged from 6.25 to 4.03 and 0.18% to 1.03%, respectively. The total phenolic contents of brown soymilk slightly increased from 2.87mg/g to 2.98mg/g after fermentation for 60hr. The levels of isoflavone-glycosides and -malonylglycosides decreased, while the isoflavone-aglycone contents increased during fermentation of brown soymilk. In particular, the isoflavone contents was 38.30㎍/g, but increased the highest value of 84.31㎍/g after fermentation for 60hr. After then, it was slightly decreased after 60hr of fermentation. In addition, the levels of daidzein, glycitein and genistein among isoflavone aglycones were 24.12㎍/g, 25.25㎍/g and 24.71 ㎍/g, after fermentation for 36hr. The DPPH and ABTS radical scavenging activities and FRAP assay showed to be slightly increased during lactic acid fermentation of brown soymilk.

Isolation and identification of soycurd forming lactic acid bacteria which produce GABA from kimchi (김치로부터 GABA를 생산하는 커드 형성 젖산균의 분리 및 동정)

  • Kim, Eun-Ah;Mann, So-Yon;Kim, Su-In;Lee, Ga-Young;Hwang, Dae-Youn;Son, Hong-Joo;Lee, Chung-Yeol;Kim, Dong-Seob
    • Food Science and Preservation
    • /
    • v.20 no.5
    • /
    • pp.705-711
    • /
    • 2013
  • Gamma amino butyric acid (GABA), known as a non-protein amino acid and major inhibitory neurotransmitter in the brain, has several functional properties such as neurotransmission, induction of hypotension, tranquilizer, and diuretic effects. The purpose of this study was to isolate and identify lactic acid bacteria, producing high GABA in fermented soy curd. Thirty-two strains of tofu-forming lactic acid bacteria were isolated from kimchi which a traditional Korean food fermented with many kind of microorganism. Among 32 strains, four strains (strain No. 10, 104, 214, 249) formed firm soycurd. In order to select lactic acid bacteria having high GABA producing potential, the isolated strains were cultured in the soymilk and fermented for 48 hr at $37^{\circ}C$. A strain No. 383, which showed highest GABA contents in fermented soycurd, was identified as L. sakei by 16S rDNA sequencing and API analysis, and named as L. sakei 383. L. sakei 383 showed optimal growth up to 24 hr at $35^{\circ}C$ in MRS broth. The optimal time and temperature for GABA production were 18 hr and $35^{\circ}C$ in soymilk. In the optimal condition time and temperature, GABA content of fermented soycurd by L. sakei 383 was 8.65 mg/100 g.

Optimization of Soymilk Fermentation by the Protease-producing Lactobacillus paracasei (Protease를 생산하는 Lactobacillus paracasei의 분리와 이를 이용한 두유 발효 최적화)

  • Lee, Sulhee;Jang, Dong-Hun;Choi, Hyuk Jun;Park, Young-Seo
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.571-577
    • /
    • 2013
  • Our aim was to ferment soymilk using lactic acid bacteria that showed protease activity and to optimize the condition for fermentation. In total, 108 strains of protease-producing lactic acid bacteria were isolated from various fermented foods such as kimchi and jeotgal, and among them, 29 strains displaying the highest protease activity were selected for further study. From these 29 strains, strain MK1, whose protease activity was 126 $mU/mL{\cdot}min$, was selected as the optimal fermentation strain owing to its high ability to digest soymilk protein. It was henceforth labeled as Lactobacillus paracasei MK1. The optimum conditions for the fermentation of soymilk by using L. paracasei MK1 were determined to be as follows: 30 h of fermentation time at a temperature of $30^{\circ}C$, and at a pH of 6.0 in the initial growth medium.

Preparation of Soymilk Yogurt and the Related Studies (고형 두유 요구르트의 제조에 관한 연구)

  • Oh, Hea-Sook;Lee, Kyung-Hea;Yoon, Sun
    • Journal of Nutrition and Health
    • /
    • v.14 no.4
    • /
    • pp.175-181
    • /
    • 1981
  • This study was carried out to investigate the feasibility of production of soy yogurt, which is inexpensive and high protein product with an acceptable flavor, from soy milk using lactic acid bacteria. Utilization of various carbohydrates by Lactobacillus acidophilus, Streptococcus thermophilus and Lactobacillus bulgaricus was stuied. Sucrose, the major carbohydrate in soymilk, was fermented by L. acidophilus and S. thermophilus. None of the testing microorganisms was able to ferment melibiose and raffinose. Growth of lactic acid bacteria in soymilk was examined every 4 hour. L. acidophilus exhibited the highest growth rate during the early stage. After 16 hours of incubation, however, all the cultures with the exception of L. bulgaricus grew at nearly equal rates. Microscopic examination of mixed cultures showed that the presence of S. thermophilus was much more pronounced than that of L. bulgaricus. All the cultures with the exception of L. bulgaricus formed acid rapidly during 16 hours of incubation, bringing the titratable acidity to 0.6% and pH to 4.3, which was sufficient to cause coagulation of soymilk. L. bulgaricus produced acid to a much lesser extent and caused coagulation of soymitk after 30 hours at earliest. Three kinds of yogurts were prepared from 100% soymilk, 100% milk and 50% soy-50% milk combination by S. thermophilus and were evaluated by taste panel. Soy yogurt received a significantly lower mean odor score than milk yogurt. Soy yogurt had custardlike texture, while milk yogurt was syrupy. However the scores for texture as well as those for color and flavor did not differ significantly among the treatment. The mean total scores for yogurts were not significantly different and were equivalent to ratings between good and high fair.

  • PDF

Preparation of Soy Yogust Using Isolated Soybean Protein and Whey Powder (분리대두단백과 유청분말을 사용한 대두 요구르트의 제조에 관한 연구)

  • 장재권;윤승헌
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.6
    • /
    • pp.1128-1134
    • /
    • 1997
  • Lactobacillus helveticus was inoculated to the fermentation liquid containing skin milk powder(SMT) plus soymilk, SMP plus isolated soybean protein(ISP), SMP plus ISP plus whey powder(WP) to increase the nutritional and economic value of commercial soy yogurt. The yogurt fermented with soymilk and SMP showed the lower acid production than of SMP and had significant beany flavor in the product. The yogurt prepared with ISP and SMP showed the higher cell number and lower acid production than that of SMP. Also, the partial substitution of SMP with ISP over 6%(w/w) produced less acceptable product due to gel production. The yogurt prepared by the partial substitution of SMP with ISP, WP and SMP showed the higher cell number and lower acid production than that of SMP and not bring about gel formation unlike the case of ISP. Sensory properties of yogurt substituted SMP with ISP and WP(38:62 mixture) below 4% were not significantly different from that of SMP and the sample containing the mixture over 6% and 0.067% artificial flavor showed lower sensory score due to beany taste than that of SMP. But increase of yogurt flavor up to 0.1% resulted in significantly high score in organoleptic acceptability. The separation of water occured in yogurt prepared by the combined mixture of ISP, WP and SMP, and this problem could be resolved by addition of Na-alginate and PGA at the concentration of 0.1%(w/w).

  • PDF

Optimization of the Production of Fibrinolytic Enzyme from Bacillus firmus NA-1 in Fermented Soybeans

  • Seo, Ji-Hyun;Lee, Sam-Pin
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.1
    • /
    • pp.14-20
    • /
    • 2004
  • Bacillus strains capable of producing fibrinolytic enzyme were isolated from traditional fermented Korean soybean paste and Japanese fermented soybean (Natto). Among the 16 strains, a selected Bacillus sp. was identified as bacillus firmus, with 80.7% homology, by API kit analysis. Seed starter or B. firmus NA-1 was prepared with 5% soymilk prepared from micronized soybean powder. To produce fibrinolytic enzyme by B. firmus NA-1 the liquid culture was performed with NB broth (pH 7.0) fortified with 1% galactose, 0.1% tryptone, and 0.5% $K_2$HPO$_4$, by shaking with 180 rpm at 37$^{\circ}C$. Fibrinolytic enzyme activity reached the highest value at 7.8 unit/mL (plasmin unit) after fermentation for 72 hr. The crude fibrinolytic enzyme showed higher relative activity in the range of pH 7.0∼9.0. The activity of crude fibrinolytic enzyme was well maintained even after concentration by the vacuum evaporation at 5$0^{\circ}C$ for 1 hr.

Isolation and Identification of Lactic acid Producing Bacteria from Kimchi and Their Fermentation Properties of Soymilk (젖산 생성능이 우수한 김치 유래 젖산균의 분리 및 두유 발효 특성)

  • Lee, Lan-Sook;Jung, Kyung Hee;Choi, Ung-Kyu;Cho, Chang-Won;Kim, Kyung-Im;Kim, Young-Chan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.11
    • /
    • pp.1872-1877
    • /
    • 2013
  • Lactic acid bacteria were selected on the basis of lactic acid producing ability from kimchi, a traditional Korean fermented food. Among the initial screening of over 150 strains selected from the sample, 27 strains were selected as lactic acid producing bacteria, and 4 strains were finally selected based on their ability to produce relatively high levels of lactic acid. The four strains were identified as Lactobacillus (L.) plantarum Gk04, Pediococcus pentosaceus Gk07, L. brevis Gk35 and L. curvatus Gk36 by the conventional morphological, cultural, physiological and biochemical characteristics, as well as by 16S rRNA sequence analysis. Among the identified lactic acid bacteria, L. curvatus Gk36 was used for soymilk fermentation. The viable cell counts and acidity values measured for the L. curvatus Gk36 were comparable to the commmercial L. acidopillus. Thus, the L. curvatus Gk36 is a potential probiotic strain to prepare fermented soy products, such as kephir, yogurt, tempeh and soy sauce.

Isolation and Partial Characterization of Isoflavone Transforming Lactobacillus plantarum YS712 for Potential Probiotic Use (Isoflavone 비배당화 및 항산화 활성을 지닌 Lactobacillus plantarum YS712의 선발)

  • Cho, Yoon-Hee;Imm, Jee-Young;Kim, Hwa-Young;Hong, Seong-Gil;Hwang, Sung-Joo;Park, Dong-Jun;Oh, Se-Jong
    • Food Science of Animal Resources
    • /
    • v.29 no.5
    • /
    • pp.640-646
    • /
    • 2009
  • Lactic acid bacteria (LAB) are typical probiotic microbes that are used in various industries including fermented foods, feed additives, and pharmaceuticals. The purpose of this study was to compare the ability of isoflavone biotransformation and antioxidative activity of 17 LAB. Six strains including the Lactobacillus species exhibited a 100% hydrolysis rate for daidzein during fermentation. The content of total genistein in soymilk fermented with these strains was $872-943\;{\mu}g/g$. The DPPH (1, 1-diphenyl-2-picrylhydrazyl) radical scavenging ability of the LAB was widely variable and ranged from 23-78%. A selected strain was isolated from kimchi and the strain was identified as Lactobacillus plantarum ssp. through the API carbohydrate fermentation pattern and 16S rDNA profile. The strain exhibited excellent acid tolerance in an artificial gastric solution. L. plantarum YS712 showed high $\beta$-glucosidase activity in fermentation. The concentration of genistein and daidzein in soymilk fermented with L. plantarum YS712 increased from 3.64 to $917.3\;{\mu}g/g$ and from 58.18 to $1062.17\;{\mu}g/g$, respectively. These results demonstrate the potential of L. plantarum YS712 as a probiotic culture that can be utilized in the manufacturing of fermentation foods and dietary supplements.