References
- Chou CC, Hou JW. 2000. Growth of bifidobacteria in soymilk and their survival in the fermented soymilk drink during storage. Int J Food Microbiol 56: 113-121. https://doi.org/10.1016/S0168-1605(99)00201-9
- Kano M, Takayanagi T, Harada K, Sawada S, Ishikawa F. 2006. Bioavailability of isoflavones after ingestion of soy beverages in healthy adults. J Nutr 136: 2291-2296. https://doi.org/10.1093/jn/136.9.2291
- Jang JK, Yoon SH. 1997. Preparation of soy yogurt using isolated soybean protein and whey powder. J Korean Soc Food Sci Nutr 26: 1128-1134.
- Wang YC, Yu RC, Chou CC. 2002. Growth and survival of bifidobacteria and lactic acid bacteria during the fermentation and storage of cultured soymilk drinks. Food Microbiol 19: 501-508. https://doi.org/10.1006/fmic.2002.0506
- Wang YC, Yu RC, Chou CC. 2006. Antioxidative activities of soymilk fermented with lactic acid bacteria and bifidobacteria. Food Microbiol 23: 128-135. https://doi.org/10.1016/j.fm.2005.01.020
- Kim MJ, Kim GR. 2006. In vitro evaluation of cholesterol reduction by lactic acid bacteria extracted from Kimchi. Korea J Culinary Res 12: 259-268.
- Klaenhammer TR. 1988. Bacteriocins of lactic acid bacteria. Biochimie 70: 337-349. https://doi.org/10.1016/0300-9084(88)90206-4
- Matsumura H, Takeuchi A, Kano Y. 1997. Construction of Escherichia coli-Bifidobacterium logum shuttle vector transforming B. longim 105-A and 108-A. Biosci Biotech Biochem 61: 1211-1212. https://doi.org/10.1271/bbb.61.1211
- Cheigh HS, Hwang JH. 2000. Antioxidative characteristic of Kimchi. Food Industry and Nutrition 5(3): 52-56.
- Park KY, Cheigh HS. 2000. Antimutagenic and anticancer effects of lactic acid bacteria isolated from Kimchi. Bioindustry News 13: 11-17.
- Stamer JR, Stoyla BO, Dunckel BA. 1971. Growth rates and fermentation patterns of lactic acid bacteria associated with sauerkraut fermentation. Milk Food Technol 34: 521-525. https://doi.org/10.4315/0022-2747-34.11.521
- Felsenstein J. 2002. PHYLIP (phylogeny inference package). version 3.6a. Department of Genetics, University of Washington, Seattle, WA, USA.
- AACC. 2000. Approved methods of the AACC. 10th ed. American Association of Cereal Chemists, St. Paul, MN, USA. Method 02-31.
- Sudirman I, Mathieu F, Michel M, Lefebvre G. 1993. Detection and properties of curvaticin 13, a bacteriocin-like substance produced by Lactobacillus curvatus SB13. Curr Microbiol 27: 35-40. https://doi.org/10.1007/BF01576831
- Garver KI, Muriana PM. 1994. Purification and partial amino acid sequence of curvaticin FS47, a heat-stable bacteriocin produced by Lactobacillus curvatus FS47. Appl Environ Microb 60: 2191-2195.
- Tichaczek PS, Meyer JN, Nes IF, Vogel RF, Hammes WP. 1992. Characterization of the bacteriocins curvacin A from Lactobacillus curvatus LTH 1174 and sakacin P from Lactobacillus sake LTH673. Syst Appl Microbiol 15: 460-468. https://doi.org/10.1016/S0723-2020(11)80223-7
- Ahmadova A, Todorov SD, Hadji-Sfaxi I, Choiset Y, Rabesona H, Messaoudi S, Kuliyev A, de Melo Francoc BDG, Chobert JM, Haertle T. 2013. Antimicrobial and antifungal activities of Lactobacillus curvatus strain isolated from homemade Azerbaijani cheese. Anaerobe 20: 42-49. https://doi.org/10.1016/j.anaerobe.2013.01.003
- Kask S, Adamberg K, Orlowski A, Vogensen FK, Moller PL, Ardo Y, Paalme T. 2003. Physiological properties of Lactobacillus paracasei, L. danicus and L. curvatus strains isolated from Estonian semi-hard cheese. Food Res Int 36:1037-1046. https://doi.org/10.1016/j.foodres.2003.08.002
- Mataragas M, Metaxopoulos J, Galiotou M, Drosinos EH. 2003. Influence of pH and temperature on growth and bacteriocin production by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442. Meat Sci 64: 265-271. https://doi.org/10.1016/S0309-1740(02)00188-2
- Mital BK, Steinkraus KH, Naylor HB. 1974. Growth of lactic acid bacteria in soymilks. J Food Sci 39: 1018-1022. https://doi.org/10.1111/j.1365-2621.1974.tb07300.x
- Liu K. 1997. Soybeans: chemistry technology and utilization. Chapman and Hall, New York, NY, USA. p 415-418.
- Donkor ON, Henriksson A, Vasiljevic T, Shah NP. 2005. Probiotic strains as starter cultures improve angiotensin-converting enzyme inhibitory activity in soy yogurt. J Food Sci 70: M375-M381. https://doi.org/10.1111/j.1365-2621.2005.tb11522.x
- Walstra P, Jenness R. 1984. Dairy chemistry and physics. John Wiley and Sons, New York, NY, USA. p 264.
Cited by
- Optimization of γ-Aminobutyric Acid Production Using Lactobacillus brevis spp. in Darae Sap vol.48, pp.3, 2016, https://doi.org/10.9721/KJFST.2016.48.3.214
- Functional beverage from fermented soymilk with improved amino nitrogen, β-glucosidase activity and aglycone content using Bacillus subtilis starter vol.25, pp.5, 2016, https://doi.org/10.1007/s10068-016-0218-0
- Optimal Lactic Acid Fermentation Conditions and Quality Properties for Rubus coreanus Miquel (Bokbunja) and Chlorella Mixtures vol.45, pp.3, 2016, https://doi.org/10.3746/jkfn.2016.45.3.386
- The fermentation characteristics of soy yogurt with different content of d-allulose and sucrose fermented by lactic acid bacteria from Kimchi pp.2092-6456, 2019, https://doi.org/10.1007/s10068-019-00560-5
- 팽이버섯(Flammulina velutipes) 분말의 젖산발효를 통한 고농도 γ-aminobutyric acid 함유 천연 발효조미료 개발 vol.24, pp.2, 2013, https://doi.org/10.11002/kjfp.2017.24.2.237
- 전통 김치로부터 Probiotic 유산균의 분리 및 우유 발효 특성 vol.37, pp.2, 2013, https://doi.org/10.22424/jmsb.2019.37.2.115
- Aronia melanocarpa Extract Fermented by Lactobacillus plantarum EJ2014 Modulates Immune Response in Mice vol.10, pp.8, 2013, https://doi.org/10.3390/antiox10081276