DOI QR코드

DOI QR Code

Isolation and Identification of Lactic acid Producing Bacteria from Kimchi and Their Fermentation Properties of Soymilk

젖산 생성능이 우수한 김치 유래 젖산균의 분리 및 두유 발효 특성

  • Received : 2013.07.12
  • Accepted : 2013.08.09
  • Published : 2013.11.30

Abstract

Lactic acid bacteria were selected on the basis of lactic acid producing ability from kimchi, a traditional Korean fermented food. Among the initial screening of over 150 strains selected from the sample, 27 strains were selected as lactic acid producing bacteria, and 4 strains were finally selected based on their ability to produce relatively high levels of lactic acid. The four strains were identified as Lactobacillus (L.) plantarum Gk04, Pediococcus pentosaceus Gk07, L. brevis Gk35 and L. curvatus Gk36 by the conventional morphological, cultural, physiological and biochemical characteristics, as well as by 16S rRNA sequence analysis. Among the identified lactic acid bacteria, L. curvatus Gk36 was used for soymilk fermentation. The viable cell counts and acidity values measured for the L. curvatus Gk36 were comparable to the commmercial L. acidopillus. Thus, the L. curvatus Gk36 is a potential probiotic strain to prepare fermented soy products, such as kephir, yogurt, tempeh and soy sauce.

본 연구는 경기도 일대의 배추김치로부터 젖산 생성능이 우수한 젖산균주 분리 및 두유 발효 특성에 대해 조사하였다. 먼저 0.01% bromocresol green이 첨가된 MRS 한천 배지에서 clear zone의 size 측정을 통하여 우수한 젖산 생성능을 갖는 균주를 선발 후 탄수화물 이용성 조사 및 16S rRNA 염기서열 분석으로 L. plantarum Gk04, Ped. pentosaceus Gk07, L. brevis Gk35 및 L. curvatus Gk36이 동정되었으며 특히 99%의 상동성을 갖는 L. curvatus Gk36을 두유발효를 위한 최종균주로 사용하였다. L. curvatus Gk36과 시판 균주 L. actobacillus에 의한 두유 발효 결과 pH는 L. actobacillus에서 유의적으로 더 낮은 것으로 나타났으나 생균수 및 산도 측정 결과 두 균주간에 유의적 차이가 없는 것으로 나타나 L. curvatus Gk36 균주는 두유발효 등 발효제품 제조를 위한 젖산균 균주로 이용이 가능할 것으로 판단되었다.

Keywords

References

  1. Chou CC, Hou JW. 2000. Growth of bifidobacteria in soymilk and their survival in the fermented soymilk drink during storage. Int J Food Microbiol 56: 113-121. https://doi.org/10.1016/S0168-1605(99)00201-9
  2. Kano M, Takayanagi T, Harada K, Sawada S, Ishikawa F. 2006. Bioavailability of isoflavones after ingestion of soy beverages in healthy adults. J Nutr 136: 2291-2296. https://doi.org/10.1093/jn/136.9.2291
  3. Jang JK, Yoon SH. 1997. Preparation of soy yogurt using isolated soybean protein and whey powder. J Korean Soc Food Sci Nutr 26: 1128-1134.
  4. Wang YC, Yu RC, Chou CC. 2002. Growth and survival of bifidobacteria and lactic acid bacteria during the fermentation and storage of cultured soymilk drinks. Food Microbiol 19: 501-508. https://doi.org/10.1006/fmic.2002.0506
  5. Wang YC, Yu RC, Chou CC. 2006. Antioxidative activities of soymilk fermented with lactic acid bacteria and bifidobacteria. Food Microbiol 23: 128-135. https://doi.org/10.1016/j.fm.2005.01.020
  6. Kim MJ, Kim GR. 2006. In vitro evaluation of cholesterol reduction by lactic acid bacteria extracted from Kimchi. Korea J Culinary Res 12: 259-268.
  7. Klaenhammer TR. 1988. Bacteriocins of lactic acid bacteria. Biochimie 70: 337-349. https://doi.org/10.1016/0300-9084(88)90206-4
  8. Matsumura H, Takeuchi A, Kano Y. 1997. Construction of Escherichia coli-Bifidobacterium logum shuttle vector transforming B. longim 105-A and 108-A. Biosci Biotech Biochem 61: 1211-1212. https://doi.org/10.1271/bbb.61.1211
  9. Cheigh HS, Hwang JH. 2000. Antioxidative characteristic of Kimchi. Food Industry and Nutrition 5(3): 52-56.
  10. Park KY, Cheigh HS. 2000. Antimutagenic and anticancer effects of lactic acid bacteria isolated from Kimchi. Bioindustry News 13: 11-17.
  11. Stamer JR, Stoyla BO, Dunckel BA. 1971. Growth rates and fermentation patterns of lactic acid bacteria associated with sauerkraut fermentation. Milk Food Technol 34: 521-525. https://doi.org/10.4315/0022-2747-34.11.521
  12. Felsenstein J. 2002. PHYLIP (phylogeny inference package). version 3.6a. Department of Genetics, University of Washington, Seattle, WA, USA.
  13. AACC. 2000. Approved methods of the AACC. 10th ed. American Association of Cereal Chemists, St. Paul, MN, USA. Method 02-31.
  14. Sudirman I, Mathieu F, Michel M, Lefebvre G. 1993. Detection and properties of curvaticin 13, a bacteriocin-like substance produced by Lactobacillus curvatus SB13. Curr Microbiol 27: 35-40. https://doi.org/10.1007/BF01576831
  15. Garver KI, Muriana PM. 1994. Purification and partial amino acid sequence of curvaticin FS47, a heat-stable bacteriocin produced by Lactobacillus curvatus FS47. Appl Environ Microb 60: 2191-2195.
  16. Tichaczek PS, Meyer JN, Nes IF, Vogel RF, Hammes WP. 1992. Characterization of the bacteriocins curvacin A from Lactobacillus curvatus LTH 1174 and sakacin P from Lactobacillus sake LTH673. Syst Appl Microbiol 15: 460-468. https://doi.org/10.1016/S0723-2020(11)80223-7
  17. Ahmadova A, Todorov SD, Hadji-Sfaxi I, Choiset Y, Rabesona H, Messaoudi S, Kuliyev A, de Melo Francoc BDG, Chobert JM, Haertle T. 2013. Antimicrobial and antifungal activities of Lactobacillus curvatus strain isolated from homemade Azerbaijani cheese. Anaerobe 20: 42-49. https://doi.org/10.1016/j.anaerobe.2013.01.003
  18. Kask S, Adamberg K, Orlowski A, Vogensen FK, Moller PL, Ardo Y, Paalme T. 2003. Physiological properties of Lactobacillus paracasei, L. danicus and L. curvatus strains isolated from Estonian semi-hard cheese. Food Res Int 36:1037-1046. https://doi.org/10.1016/j.foodres.2003.08.002
  19. Mataragas M, Metaxopoulos J, Galiotou M, Drosinos EH. 2003. Influence of pH and temperature on growth and bacteriocin production by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442. Meat Sci 64: 265-271. https://doi.org/10.1016/S0309-1740(02)00188-2
  20. Mital BK, Steinkraus KH, Naylor HB. 1974. Growth of lactic acid bacteria in soymilks. J Food Sci 39: 1018-1022. https://doi.org/10.1111/j.1365-2621.1974.tb07300.x
  21. Liu K. 1997. Soybeans: chemistry technology and utilization. Chapman and Hall, New York, NY, USA. p 415-418.
  22. Donkor ON, Henriksson A, Vasiljevic T, Shah NP. 2005. Probiotic strains as starter cultures improve angiotensin-converting enzyme inhibitory activity in soy yogurt. J Food Sci 70: M375-M381. https://doi.org/10.1111/j.1365-2621.2005.tb11522.x
  23. Walstra P, Jenness R. 1984. Dairy chemistry and physics. John Wiley and Sons, New York, NY, USA. p 264.

Cited by

  1. Optimization of γ-Aminobutyric Acid Production Using Lactobacillus brevis spp. in Darae Sap vol.48, pp.3, 2016, https://doi.org/10.9721/KJFST.2016.48.3.214
  2. Functional beverage from fermented soymilk with improved amino nitrogen, β-glucosidase activity and aglycone content using Bacillus subtilis starter vol.25, pp.5, 2016, https://doi.org/10.1007/s10068-016-0218-0
  3. Optimal Lactic Acid Fermentation Conditions and Quality Properties for Rubus coreanus Miquel (Bokbunja) and Chlorella Mixtures vol.45, pp.3, 2016, https://doi.org/10.3746/jkfn.2016.45.3.386
  4. The fermentation characteristics of soy yogurt with different content of d-allulose and sucrose fermented by lactic acid bacteria from Kimchi pp.2092-6456, 2019, https://doi.org/10.1007/s10068-019-00560-5
  5. 팽이버섯(Flammulina velutipes) 분말의 젖산발효를 통한 고농도 γ-aminobutyric acid 함유 천연 발효조미료 개발 vol.24, pp.2, 2013, https://doi.org/10.11002/kjfp.2017.24.2.237
  6. 전통 김치로부터 Probiotic 유산균의 분리 및 우유 발효 특성 vol.37, pp.2, 2013, https://doi.org/10.22424/jmsb.2019.37.2.115
  7. Aronia melanocarpa Extract Fermented by Lactobacillus plantarum EJ2014 Modulates Immune Response in Mice vol.10, pp.8, 2013, https://doi.org/10.3390/antiox10081276