DOI QR코드

DOI QR Code

Influence of soymilk and skim milk on growth and antibacterial activity of lactic acid bacteria

유산균의 증식과 항균 활성에 관한 탈지유 및 두유의 영향

  • Lim, Eun-Seo (Department of Food Science & Nutrition, Tongmyong University)
  • Received : 2019.06.19
  • Accepted : 2019.07.10
  • Published : 2019.09.30

Abstract

The purpose of this study was to investigate the effect of lactic acid bacteria (LAB) on the growth and biogenic amines (BA) formation of Enterobacter aerogenes CIH05 in skim milk and soymilk. Lactobacillus acidophilus GK20, Lactobacillus paracasei GK74, and Lactobacillus plantarum GK81 isolated from mustard kimchi did not produce BA in the decarboxylation broth. L. paracasei GK74 exhibited the highest cell viability and antimicrobial compounds producing ability in fermented skim milk and soymilk samples, while the lowest producer was L. plantarum GK81. The production yield of lactic acid, hydrogen peroxide, and bacteriocin was dependent on the species of Lactobacillus and the type of culture medium. As LAB the number of viable cells of E. aerogenes CIH05 were higher in skim milk than in soymilk. When mixed culture with L. acidophilus GK20 and L. paracasei GK74 and treated with bacteriocin solution (300 AU/ml) obtained from these strains in milk media, the cell growth and cadaverine and histamine contents of E. aerogenes CIH05 were significantly (P < 0.05) lower than the respective values in control sample.

본 연구의 목적은 탈지유와 두유 내에서 Enterobacter aerogenes CIH05의 증식과 바이오제닉 아민(biogenic amines, BA) 생성량에 대한 유산균의 영향을 조사하는 것이다. 갓김치로부터 분리된 Lactobacillus acidophilus GK20, Lactobacillus paracasei GK74 및 Lactobacillus planatrum GK81은 탈카르복시화 배지 상에서 BA를 생성하지 않았다. 탈지유와 두유 내에서 L. paracasei GK74에 의해 가장 많은 생균수와 항균 물질 생성량이 측정되었고, 반면 L. plantarum GK81은 다른 균주들에 비해 유의하게 낮은 균수와 항균 물질을 생산하였다. 유산, 과산화수소 및 박테리오신의 생산량은 Lactobacillus의 균종과 배지 종류에 의존하였다. 유산균과 유사하게 E. aerogenes CIH05도 단독 배양 시 두유보다 탈지유에서 더 많은 균수가 측정되었다. 탈지유와 두유 내에서 L. acidophilus GK20이나 L. paracasei GK74와 혼합 배양하거나 박테리오신 용액(300 AU/ml)을 처리했을 때 E. aerogenes CIH05의 균수가 유의하게 감소되었고 히스타민과 카다베린의 생성도 효과적으로 억제되었다.

Keywords

References

  1. Alvarez MA and Moreno-Arribas MV. 2014. The problem of biogenic amines in fermented foods and the use of potential biogenic amine-degrading microorganisms as a solution. Trend Food Sci. Technol. 39, 146-155. https://doi.org/10.1016/j.tifs.2014.07.007
  2. Barbieri F, Montanari C, Gardini F, and Tabanelli G. 2019. Biogenic amine production by lactic acid bacteria: a review. Foods 8, 17-43. https://doi.org/10.3390/foods8010017
  3. Bargossi E, Gardini F, Gatto V, Montanari C, Torriani S, and Tabanelli G. 2015. The capability of tyramine production and correlation between phenotypic and genetic characteristics of Enterococcus faecium and Enterococcus faecalis trains. Front. Microbiol. 6, 1371-1377.
  4. Benkerroum N. 2016. Biogenic amines in dairy products: origin, incidence, and control means. Comp. Rev. Food Sci. Food Safety 15, 801-826. https://doi.org/10.1111/1541-4337.12212
  5. Bodmer S, Imark C, and Kneubühl M. 1999. Biogenic amines in foods: Histamine and food processing. Inflam. Res. 48, 296-300. https://doi.org/10.1007/s000110050463
  6. Bover-Cid S and Holzapfel WH. 1999. Improved screening procedure for biogenic amine production by lactic acid bacteria. Int. J. Food Microbiol. 53, 33-41. https://doi.org/10.1016/S0168-1605(99)00152-X
  7. Capozzi V, Russo P, Ladero V, Fernandez M, Fiocco D, Alvarez MA, Grieco F, and Spano G. 2012. Biogenic amines degradation by Lactobacillus plantarum: toward a potential application in wine. Front. Microbiol. 3, 1-6. https://doi.org/10.3389/fmicb.2012.00001
  8. De Llano DG, Cuesta P, and Rodriguez A. 1998. Biogenic amine production by wild lactococcal and leuconostoc strains. Lett. Appl. Microbiol. 26, 270-274. https://doi.org/10.1046/j.1472-765X.1998.00320.x
  9. Devi SM, Ramaswamy AM, and Halami PM. 2014. In situ production on pediocin PA-1 like bacteriocin by different genera of lactic acid bacteria in soymilk fermentation and evaluation of sensory properties of the fermented soy curd. J. Food Sci. Technol. 51, 3325-3332. https://doi.org/10.1007/s13197-012-0870-1
  10. Eerola S, Hinkkanen R, Lindfors E, and Hirvi T. 1993. Liquid chromatographic determination of biogenic amines in dry sausages. J. Assoc. Off. Anal. Chem. Int. 75, 575-577.
  11. Gardini F, Ozogul Y, Suzzi G, Tabanelli G, and Ozogul F. 2016. Technological factors affecting biogenic amine content in foods: a review. Front. Microbiol. 7, 1-18.
  12. Gardini F, Tofalo R, Belletti N, Iucci L, Suzi G, Torriani S, Guerzoni ME, and Lanciotti R. 2006. Characterization of yeasts involved in the ripening of Pecorino Crotonese cheese. Food Microbiol. 23, 641-648. https://doi.org/10.1016/j.fm.2005.12.005
  13. Gilliland SE. 1969. Enzymatic determination of residual hydrogen peroxide in milk. J. Dairy Sci. 52, 321-324. https://doi.org/10.3168/jds.S0022-0302(69)86554-9
  14. Hati S, Patel N, and Mandal S. 2018. Comparative growth behavior and biofunctionality of lactic acid bacteria during fermentation of soy milk and bovine milk. Probiotics Antimicrob. Proteins 10, 277-283. https://doi.org/10.1007/s12602-017-9279-5
  15. Hole H, Nilssen O, and Nes IF. 1991. Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: Isolationnn and characterization of the protein and its gene. J. Bacteriol. 173, 3879-3887. https://doi.org/10.1128/jb.173.12.3879-3887.1991
  16. Joosten H and Nunez M. 1996. Prevention of histamine formation in cheese by bacteriocin-producing lactic acid bacteria. Appl. Environ. Microbiol. 62, 1178-1181. https://doi.org/10.1128/AEM.62.4.1178-1181.1996
  17. Kimura B, Konagaya Y, and Fujii T. 2001. Histamine formation by Tetragenococcus muriaticus, a halophilic lactic acid bacterium isolated form fish sauce. Int. J. Food Microbiol. 70, 71-77. https://doi.org/10.1016/S0168-1605(01)00514-1
  18. Kongkiattikajorn J. 2015. Potential of starter culture to reduce biogenic amines accumulation in som-fug, a Thai traditional fermented fish sausage. J. Ethn. Food 2, 186-194. https://doi.org/10.1016/j.jef.2015.11.005
  19. Lim ES. 2018. Antibacterial activity of lactic acid bacteria against biogenic amine-producing Bacillus spp. isolated from traditional fermented soybean paste. Korean J. Microbiol. 54, 398-409. https://doi.org/10.7845/KJM.2018.8058
  20. Lim SM, Jeong KS, Lee NG, Park SM, and Ahn DH. 2011. Synergy effects by combination with lactic acid bacteria and frutooligosaccharides on the cell growth and antimicrobial activity. Food Sci. Biotechnol. 20, 1389-1397. https://doi.org/10.1007/s10068-011-0191-6
  21. Lim ES and Lee NG. 2016. Control of histamine-forming bacteria by probiotic lactic acid bacteria isolated from fish intestine. Korean J. Microbiol. 52, 352-364. https://doi.org/10.7845/kjm.2016.6041
  22. Linares DM, Martin MC, Ladero V, AlvarezMA, and Fernandez M. 2011. Biogenic amines in dairy products. Crit. Rev. Food Sci. Nutr. 51, 629-703.
  23. Mah JH, Ahn JB, Park JH, Sung HC, and Hwang HJ. 2003. Characterization of biogenic amine-producing microorganisms isolated from Myeolchi-Jeot, Korean salted and fermented anchovy. J. Microbiol. Biotechnol. 13, 692-699.
  24. Nugrahani A, Hardoko A, and Hariati AM. 2016. Characterization of bacteriocin Lactobacillus casei on histamine-forming bacteria. J. Life Sci. Biomed. 6, 15-21.
  25. Ozogul F and Hamed I. 2018. The importance of lactic acid bacteria for the prevention of bacterial growth and their biogenic amines formation: a review. Crit. Rev. Food Sci. Nutr. 58, 1660-1670. https://doi.org/10.1080/10408398.2016.1277972
  26. Papadimitriou K, Alegria A, Bron PA, De Angelis M, Gobbetti M, Kleerebezem M, Lemos JA, Linares DM, Ross P, Stanton C, et al. 2016. Stress physiology of lactic acid bacteria. Microbiol. Mol. Biol. Rev. 80, 837-887. https://doi.org/10.1128/MMBR.00076-15
  27. Pircher A, Bauer F, and Paulsen P. 2007. Formation of cadaverine, histamine, putrescine and tyramine by bacterial isolated from mean, fermented sausages and cheeses. Eur. Food Res. Technol. 226, 225-231. https://doi.org/10.1007/s00217-006-0530-7
  28. Priyadarshani WMD and Rakshit SK. 2014. Growth and biogenic amine (histamine and tyramine) potential of probiotic Lactobacillus casei in skim milk. Am. J. Food Technol. 9, 69-79. https://doi.org/10.3923/ajft.2014.69.79
  29. Quinto EJ, Jimenez P, Caro I, Tejero J, Matero J, and Girbes T. 2014. Probiotic lactic acid bacteria: a review. Food Nutr. Sci. 5, 1765-1775. https://doi.org/10.4236/fns.2014.518190
  30. Russo P, De Palencia PF, Romano A, Fernandez M, Lucas P, Spano G, and Lopez P. 2012. Biogenic amine production by the wine Lactobacillus brevis IOEB 9809 in systems that partially mimic the gastrointestinal tract stress. BMC Microbiol. 12, 247-256. https://doi.org/10.1186/1471-2180-12-247
  31. Settanni L, Massitti O, Van Sinderen D, and Corsetti A. 2005. In situ activity of a bacteriocin-producing Lactococcus lactis strain. Influence on the interactions between lactic acid bacteria during sourdough fermentation. J. Appl. Microbiol. 99, 670-681. https://doi.org/10.1111/j.1365-2672.2005.02647.x
  32. Shah NP and Ravula RR. 2002. Influence of water activity on fermentation, organic acids production and viability of yogurt and probiotic bacteria. Aust. J. Dairy Technol. 55, 127-131. https://doi.org/10.1046/j.1471-0307.2002.00044.x
  33. Shalaby AR. 1996. Significance of biogenic amines to food safety and human health. Food Res. Int. 29, 675-690. https://doi.org/10.1016/S0963-9969(96)00066-X
  34. Zhang Q, Lin S, and Nie X. 2013. Reduction of biogenic amine accumulation in silver carp sausage by an amine-negative Lactobacillus plantarum. Food Cont. 32, 496-500. https://doi.org/10.1016/j.foodcont.2013.01.029
  35. Zhang K and Ni Y. 2014. Tyrsosine decarboxylase from Lactobacillus brevis: soluble expression and characterization. Protein Expr. Purif. 94, 33-39. https://doi.org/10.1016/j.pep.2013.10.018