• Title/Summary/Keyword: Femur phantom

Search Result 10, Processing Time 0.035 seconds

Evaluation of Usefulness and Fabrication of Femur Phantom on Quality Control of Bone Mineral Density Using 3D Printing Technology (3D 프린팅기술을 이용한 골밀도 정도관리 대퇴골 팬텀 제작 및 유용성 평가)

  • Da-Yeong, Hong;Jeong, Lee;Jun-Ho, Lee;Jae-Won, Mun;Han-Saem, Oh;Yu-Won, Jeong;Seong-Hyun, Jin;Jong-Min, Hong;In-Ja, Lee
    • Journal of radiological science and technology
    • /
    • v.46 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • As the demand for bone mineral density testing increases in Korea, which is close to an aging society, it is necessary to evaluate the repeatability of equipment such as femur phantom other than l-spine for more accurate diagnosis. However, in clinical practice, it is often not possible to proceed such evaluation due to insufficient quality control conditions. Therefore, this study is to evaluate the usefulness of the femur phantom after fabricating the same using 3D printing technology. The femur phantom was output using GlowFill filament and FDM 3D printing type. Each phantom was repeatedly scaned 20 times to compare whether the existing l-spine phantom and the fabricated femur phantom were suitable as a phantom for quality control. Each time the seven researchers took three times, the location of the femur phantom was readjusted, and then scanned to confirm the error between the researchers. As a result of conducting repeatability evaluation using femur phantom, the coefficient of variation rate was 2%, which was within the minimum precision tolerance of 2.5%. The reproducibility between the researcher was also found to be suitable as the average coefficient of variation was 0.031 and the coefficient of variation rate was 3.1%, which was within the minimum precision error range of 5%. In conclusion, it is considered that the prospective attitude and usefulness of the femur phantom fabricated by 3D printing in clinical practice will be sufficient.

A Fundamental Study on the Fabrication of Human Model Bone Phantom using an Entry-Level 3D Printer: using FDM Method for the Femur Model (보급형 3D 프린터를 이용한 인체 모형 뼈 팬텀 제작의 기초연구: Femur 대상으로 적층형 출력 방식 이용)

  • Namkung, Eun-Jae;Kim, Do-Hee;Kim, So-Hui;Park, Se-Eun;Jung, Dabin;Park, Sang-Hyub;Heo, Yeong-Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.651-660
    • /
    • 2020
  • The purpose of this study was to create a phantom with a HU value similar to that of the human Femur using a 3D printer to replace the existing pig bone. A total of 372 people were analyzed to determine the HU value of human Femur. Using a 3D printer, a human bone model phantom was fabricated using PLA-Cu 20% and subjected to CT examination. Pig bones were 6 months old pigs, and bones 2 days after slaughter were used. As a result of the examination, the 3D printing phantom made with 80% of the internal filling showed a similar value to all data of the human body (p<0.05), and there was a difference from the pig bone (p>0.05). In addition, in the case of the HU value of Femur by age group, it was confirmed that the value of HU decreased as the age group increased (p<0.05). 3D printing and HU values confirmed a weak negative correlation with respect to the stacking height, but confirmed a strong positive correlation (R2 = 0.996) with 182.13±1.290 in the inner filling (p<0.05). In conclusion, it was confirmed that the human body model phantom using 3D printing can exhibit a similar level of HU value to the human body compared to the existing pig bone phantom, and this study will provide basic data for the production of a human body model phantom using a 3D printer.

A Study of Equipment Accuracy and Test Precision in Dual Energy X-ray Absorptiometry (골밀도검사의 올바른 질 관리에 따른 임상적용과 해석 -이중 에너지 방사선 흡수법을 중심으로-)

  • Dong, Kyung-Rae;Kim, Ho-Sung;Jung, Woon-Kwan
    • Journal of radiological science and technology
    • /
    • v.31 no.1
    • /
    • pp.17-23
    • /
    • 2008
  • Purpose : Because there is a difference depending on the environment as for an inspection equipment the important part of bone density scan and the precision/accuracy of a tester, the management of quality must be made systematically. The equipment failure caused by overload effect due to the aged equipment and the increase of a patient was made frequently. Thus, the replacement of equipment and additional purchases of new bonedensity equipment caused a compatibility problem in tracking patients. This study wants to know whether the clinical changes of patient's bonedensity can be accurately and precisely reflected when used it compatiblly like the existing equipment after equipment replacement and expansion. Materials and methods : Two equipments of GE Lunar Prodigy Advance(P1 and P2) and the Phantom HOLOGIC Spine Road(HSP) were used to measure equipment precision. Each device scans 20 times so that precision data was acquired from the phantom(Group 1). The precision of a tester was measured by shooting twice the same patient, every 15 members from each of the target equipment in 120 women(average age 48.78, 20-60 years old)(Group 2). In addition, the measurement of the precision of a tester and the cross-calibration data were made by scanning 20 times in each of the equipment using HSP, based on the data obtained from the management of quality using phantom(ASP) every morning (Group 3). The same patient was shot only once in one equipment alternately to make the measurement of the precision of a tester and the cross-calibration data in 120 women(average age 48.78, 20-60 years old)(Group 4). Results : It is steady equipment according to daily Q.C Data with $0.996\;g/cm^2$, change value(%CV) 0.08. The mean${\pm}$SD and a %CV price are ALP in Group 1(P1 : $1.064{\pm}0.002\;g/cm^2$, $%CV=0.190\;g/cm^2$, P2 : $1.061{\pm}0.003\;g/cm^2$, %CV=0.192). The mean${\pm}$SD and a %CV price are P1 : $1.187{\pm}0.002\;g/cm^2$, $%CV=0.164\;g/cm^2$, P2 : $1.198{\pm}0.002\;g/cm^2$, %CV=0.163 in Group 2. The average error${\pm}$2SD and %CV are P1 - (spine: $0.001{\pm}0.03\;g/cm^2$, %CV=0.94, Femur: $0.001{\pm}0.019\;g/cm^2$, %CV=0.96), P2 - (spine: $0.002{\pm}0.018\;g/cm^2$, %CV=0.55, Femur: $0.001{\pm}0.013\;g/cm^2$, %CV=0.48) in Group 3. The average error${\pm}2SD$, %CV, and r value was spine : $0.006{\pm}0.024\;g/cm^2$, %CV=0.86, r=0.995, Femur: $0{\pm}0.014\;g/cm^2$, %CV=0.54, r=0.998 in Group 4. Conclusion: Both LUNAR ASP CV% and HOLOGIC Spine Phantom are included in the normal range of error of ${\pm}2%$ defined in ISCD. BMD measurement keeps a relatively constant value, so showing excellent repeatability. The Phantom has homogeneous characteristics, but it has limitations to reflect the clinical part including variations in patient's body weight or body fat. As a result, it is believed that quality control using Phantom will be useful to check mis-calibration of the equipment used. A value measured a patient two times with one equipment, and that of double-crossed two equipment are all included within 2SD Value in the Bland - Altman Graph compared results of Group 3 with Group 4. The r value of 0.99 or higher in Linear regression analysis(Regression Analysis) indicated high precision and correlation. Therefore, it revealed that two compatible equipment did not affect in tracking the patients. Regular testing equipment and capabilities of a tester, then appropriate calibration will have to be achieved in order to calculate confidential BMD.

  • PDF

Comparison of Bone Volume Measurements Using Conventional Single and Dual Energy Computed Tomography (전산화단층영상검사에서 단일에너지와 이중에너지를 이용한 뼈 부피측정의 비교)

  • Kim, Yung-kyoon;Park, Sang-Hoon;Kim, Yon-Min
    • Journal of radiological science and technology
    • /
    • v.40 no.2
    • /
    • pp.253-259
    • /
    • 2017
  • The study examines changes in calcium volume on born by comparing two figures; one is measured by dual energy computed tomography(DECT) followed by applying variation in monochromatic energy selection(keV), material decomposition(MD), and material suppressed iodine(MSI) analysis, and the other is measured by conventional single source computed tomography(CSCT). For this study, based on CSCT images taken by using human mimicked phantom, 70, 100, 140 keV and MSI, MD material calcium weighting(MCW) and MD material iodine weighting(MIW) of DECT were applied respectively. Then calculated calcium volume was converted to Agatston score for comparison. Volume of human mimicked phantom was in inverse proportion to keV. The volume decreased while keV increased(p<0.05). The most similar DECT volumes were reconstructed at 70 keV, the difference was showed $35.8{\pm}12.2$ for rib, femur ($16.1{\pm}24.1$), pelvis($13.7{\pm}18.8$), and spine($179.0{\pm}61.8$). However, the volume of MSI was down for each organ; the volume of rib was 5.55%, femur(76.34%), pelvis(55.16%) and spine(87.58%). The volume of MSI decreased 55.9% for rib, femur(80.7%), pelvis(69.6%) and spine(54.2%) while MD MIW reduced for rib(83.51%), femur(87.68%), pelvis(86.64%), and spine(82.62%). With the results, the study found that outcomes were affected by the method which examiners employed. When using DECT, calcium volume of born dropped with keV increased. It also found that the most similar DECT images were reconstructed at 70 keV. The results of experiments implied that the users of MSI and MD should be cautious of errors as there are big differences in scores between those two methods.

Quantitative Analysis of 3D-CRT Radiotherapy Planning Factors with or without IR in Patients with High Density Artifacts (고밀도 인공물 환자에서 반복적 재구성 사용 유무에 따른 3차원 입체조형 방사선 치료 계획 인자의 정량분석)

  • Lee, Gyu-Wook;Choi, U-Hyeong;Jung, Yae-Hyun;Lee, Joo-Hee;Yun, In-Ha;Heo, Yeong-Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.1
    • /
    • pp.7-14
    • /
    • 2020
  • The purpose of this study is to assess the usefulness of IR to compensate for uncertainties in inserting high density artificial objects in radiation treatment planning in the 3D-CRT treatment technique. CT images of the subjects with phantom and titanium inserted were obtained from images without IR and images with IR, and the dose evaluation factors HI, MU and volume evaluation factors Volume and PCI were compared. The results of the stainless steel and titanium phantom experiments showed that the volume of high density artificial material was reduced by 4.850% and 11.456% respectively when applying IR. MU decreased 0.924% and 1.181%. HI was down 0.106% and 0.272%. PCI decreased 0.358% and 0.867%. When IR was applied to CT images of subjects with vertebroplasty, Femur alignment pin and wrist alignment pin, the volume of artifacts decreased by 47.76%, 23.841%, and 49.339%. MU also decreased 0.924%, 0.294% and 1.675%, while HI decreased 1.232%, 0.412% and 1.695%. PCI decreases 4.022%, 0.512%, and 13.472%. In conclusion, When IR was applied to 3D-CRT treatment plan, both dose and volume in phantom and subject case with high density artificial insert were reduced.

Evaluation of the Usefulness of Assist Device for Rosenberg View Test (Rosenberg View 검사를 위한 보조기구의 유용성 평가)

  • Kong, Chang gi;Song, Jong Nam;Kim, In Soo;Han, Jae Bok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.129-138
    • /
    • 2020
  • Due to the nature of the Rosenberg Method, the patient needs to maintain posture for a certain period of time, and the joint space is observed in various forms depending on the angle of knee flexion, which causes difficulties in examination. In order to solve these problems, Image quality was evaluated in order to evaluate the usefulness of the assistive device by making the assistive device itself. SNR and CNR analysis about the presence or absence of an assistive device using the extremity phantom and the angle of the assistive device itself were not statistically significant(p < 0.05). As a result of measuring the distance between the right and left edges of the medial condyle based on the presence or absence of an assist device, and the absence of assist device (96.00±40.6 mm) and presence of an assist device (134.86±17.68 mm) were statistically significant (p <0.05). To find the aLDFA relationship about the femur and tibia, we measured the right and left aLDFA based on the presence or absence of assist device. As a result, the absence of the right-side aLDFA assist device (74.63°±4.87) and the presence of assist device (79.64°±3.65) were statistically significant (p <0.05). The absence of the left-side aLDFA assist device (76.39°±4.62) and the presence of assist device (79.64°±3.65) were statistically significant (p < 0.05). but, As a result of measuring the distance of the overlapping parts of the right and left proximal tibiofibular joint and the lateral condyle, There were no statistically significant differences between the right and left sides. In conclusion, we confirmed that we can obtain Diagnostically valuable images with a constant knee-to-knee spacing using an assist device we self-created. In addition, we could learn through aLDFA relationship between femur and tibial that the smaller the angle, the more medial condyle overlaps with JSW, We also confirmed the significance by deriving similar values on the normal range values of aLDFA using assist devices. However, it is considered necessary to pay attention to internal and external rotations in order to obtain good quality images by evaluating the distance of overlapping parts between proximal tibiofibular joint and lateral condyle.

The Study of Technical Error Analysis on BMD Using DEXA (이중 에너지 X선 흡수 계측법을 이용한 BMD 검사 시 발생할 수 있는 기술적인 오류 분석)

  • Kang, Yeong-Han;Jo, Gwang-Ho
    • Journal of radiological science and technology
    • /
    • v.29 no.4
    • /
    • pp.229-236
    • /
    • 2006
  • Purpose: This study was conducted to search for the type of technical error in DEXA(dual-energy X-ray absorptiometry) and the effect of error to measurement of BMD. Materials and Methods: The changes of BMD($g/cm^2$, T-score) by patients information(Age, Weight, Height, Manopause age) input error and Confirming ROI error were investigated. Using spine phantom, we canned 10 times by age(5, 10), weight(10, 20 kg), height(5, 10 cm), manopause age(5, 10) increase & decrease respectively. Scanning region(L-spine, femur, Forearm) of 10 patients was calculated by changing ROI respectively. Analysis of difference for mean(precision 1%) were carried out. Results: The error of patient information(Age, Weight, Height, Manopause age) was not changed differently. In confirming ROI, the BMD and T-score of L-spine involving T-12 was decreased to $0.063\;g/cm^2$, 0.3 and involving L-5 increased to $0.077\;g/cm^2$, 0.5. In narrowing 1 cm of vertical line of ROI, the BMD and T-score decreased to $0.006\;g/cm^2$, 0.1 and in 2 cm, $0.021\;g/cm^2$, 0.15, each. In hip ROI, Upper and left shift(0.5 cm) of line was not influenced BMD and T-score. In 0.5 cm lower shift(lesser trochanter below), the BMD and T-score increased $0.031\;g/cm^2$, 0.3 and in 1 cm $0.094\;g/cm^2$, 0.65, each. In forearm ROI, the BMD and T-score decreased $0.042\;g/cm^2$, 0.9 involving 1 cm lower wrist. And expanding 1 cm of vertical line, the BMD and T-score decreased $0.008\;g/cm^2$, 0.1 and in 2 cm, $0.021\;g/cm^2$, 0.3, each. The L-spine, hip, forearm ROI error was changed differently. Conclusion: There are so many kinds of technical error in BMD processing. Errors according to age, weight, height, manopause age did not influent to $BMD(g/cm^2)$ and T-score. There are mean differences BMD and T-score in confirming ROI. For the precision exam, in L-spine processing, L1-4 have to confirmed without shift of ROI vertical line. In hip processing, the ROI have to included greater trochanter, femur head and lesser trochanter. In forearm processing, the ROI have to included wrist, radius and ulnar.

  • PDF

Partial transmission block production for real efficient method of block and MLC (Partial transmission block 제작 시 real block과 MLC를 이용한 방법 중 효율적인 방법에 대한 고찰)

  • Choi JiMin;Park JuYoung;Ju SangGyu;Ahn JongHo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.2
    • /
    • pp.19-24
    • /
    • 2004
  • Introduction : The Vaginal, the urethra, the vulva and anal cancer avoid the many dose to femur head and the additional treatment is necessary in inguinal LN. The partial transmission block to use inguinal LN addition there is to a method which it treats and produce partial transmission block a method and the MLC which to it analyzes. Material & Methode : The Inguinal the LN treatment patient partial transmission it used block and the MLC in the object and with solid water phantom with the patient it reappeared the same depth. In order to analyze the error of the junction the EDR2 (Extended dose range, the Kodak and the U.S) it used the Film and it got film scanner it got the beam profile. The partial transmission block and the MLC bias characteristic, accuracy and stability of production for, it shared at hour and comparison it analyzed. Result : The partial the transmission block compares in the MLC and the block production is difficult and production hour also above 1 hours. The custom the block the place where it revises the error of the junction is a difficult problem. If use of the MLC the fabrication will be break and only the periodical calibration of the MLC it will do and it will be able to use easily. Conclusion : The Inguinal there is to LN treatment and partial transmission block and the MLC there is efficiency of each one but there is a place where the junction of block for partial transmission block the production hour is caught long and it fixes and a point where the control of the block is difficult. like this problem it transfers with the MLC and if it treats, it means the effective treatment will be possible.

  • PDF

A Study on the Optimal Angle as Modified Tangential Projection of Knee Bones (무릎뼈의 변형된 접선방향 검사 시 최적의 입사각에 관한 연구)

  • Oh, Wang-Kyun;Kim, Sang-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.919-926
    • /
    • 2021
  • In this study, we wanted to find out the optimal angle as a modified tangential projection of the patella. In the experiment, we used Kyoto Kagaku's PBU-50 phantom. In the supine position, the F-T angle was set to 95°, 105°, 115°, 125°, 135°, 145°, and Patella tangential projection images were obtained by varying the X-ray tube angle by 5° so that the angle between the X-ray centerline and tibia at each angle was 5~20°. Image J was used for image analysis and the congruence angle, lateral patellofemoral angle, patellofemoral index and contrast to noise ratio(CNR) were also measured. SPSS 22 was used for statistical analysis, and the mean values of congruence angle, patellofemoral angle, patellofemoral index, and CNR were compared with Merchant method through one-way batch analysis and corresponding sample t-test. As a result of the study, in the case of congruence angle, the angle of incidence of the knee-angle X-ray centerline was 105°-72.5° (20° tangential irradiation), 115°-72.5°, 77.5° (15, 20° tangential irradiation), 125°-82.5° (20° tangential irradiation), lateral patellofemoral angle is 115°-72.5°, 77.5° (15, 20° tangential irradiation), 125°-72.5° (10° tangential irradiation), patellofemoral index is 115°-72.5° (15° tangential irradiation) and 125°-72.5° (10° tangential irradiation) were not significantly different from Merchant method (p> .05). In case of CNR, it is not different from Merchant method at 105°-67.5°, 72.5° (15, 20° tangential irradiation), 115°-67.5°, 72.5°, 77.5° (10, 15, 20° tangential irradiation). (P> .05). Based on the results of this study, high diagnostic value images can be obtained by setting the knee angle and the angle of incidence of the X-ray tube to 115°-72.5° (15° tangential irradiation) during the modified tangential examination of the knee bone. It was confirmed.

Utility of Wide Beam Reconstruction in Whole Body Bone Scan (전신 뼈 검사에서 Wide Beam Reconstruction 기법의 유용성)

  • Kim, Jung-Yul;Kang, Chung-Koo;Park, Min-Soo;Park, Hoon-Hee;Lim, Han-Sang;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.83-89
    • /
    • 2010
  • Purpose: The Wide Beam Reconstruction (WBR) algorithms that UltraSPECT, Ltd. (U.S) has provides solutions which improved image resolution by eliminating the effect of the line spread function by collimator and suppression of the noise. It controls the resolution and noise level automatically and yields unsurpassed image quality. The aim of this study is WBR of whole body bone scan in usefulness of clinical application. Materials and Methods: The standard line source and single photon emission computed tomography (SPECT) reconstructed spatial resolution measurements were performed on an INFINA (GE, Milwaukee, WI) gamma camera, equipped with low energy high resolution (LEHR) collimators. The total counts of line source measurements with 200 kcps and 300 kcps. The SPECT phantoms analyzed spatial resolution by the changing matrix size. Also a clinical evaluation study was performed with forty three patients, referred for bone scans. First group altered scan speed with 20 and 30 cm/min and dosage of 740 MBq (20 mCi) of $^{99m}Tc$-HDP administered but second group altered dosage of $^{99m}Tc$-HDP with 740 and 1,110 MBq (20 mCi and 30 mCi) in same scan speed. The acquired data was reconstructed using the typical clinical protocol in use and the WBR protocol. The patient's information was removed and a blind reading was done on each reconstruction method. For each reading, a questionnaire was completed in which the reader was asked to evaluate, on a scale of 1-5 point. Results: The result of planar WBR data improved resolution more than 10%. The Full-Width at Half-Maximum (FWHM) of WBR data improved about 16% (Standard: 8.45, WBR: 7.09). SPECT WBR data improved resolution more than about 50% and evaluate FWHM of WBR data (Standard: 3.52, WBR: 1.65). A clinical evaluation study, there was no statistically significant difference between the two method, which includes improvement of the bone to soft tissue ratio and the image resolution (first group p=0.07, second group p=0.458). Conclusion: The WBR method allows to shorten the acquisition time of bone scans while simultaneously providing improved image quality and to reduce the dosage of radiopharmaceuticals reducing radiation dose. Therefore, the WBR method can be applied to a wide range of clinical applications to provide clinical values as well as image quality.

  • PDF