• Title/Summary/Keyword: Feedback oscillation

Search Result 142, Processing Time 0.026 seconds

CDM Controller Incorporating Friction Compensation for Rotational Inverted Pendulum

  • Cahyadi, Adha I.;Benjanarasuth, Taworn;Isarakorn, Don;Ngamwiwit, Jongkol;Komine, Noriyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1901-1905
    • /
    • 2004
  • A controller designed by CDM for a servo type system which is an augmented system constructed from a rotational inverted pendulum with an integrator added to its arm, is presented in this paper. In order to be able to apply the CDM concept, the augmented system must be linearized and converted into controllable canonical form. Then, the controller consisting of the state feedback gain matrix and an integral gain in the sense of CDM can be obtained. This shows that design procedure for the proposed controller is easy. The experimental results obtained from the rotational inverted pendulum controlled by the proposed controller show that the system response has no steady-state error, however, the oscillation amplitude of the arm angle is still significant. Therefore, in this paper, the friction compensation using Coulomb friction with stiction is also added to the controller. The oscillation amplitude of the arm angle that can be reduced remarkably is also shown in the experimental results.

  • PDF

Design of the Voltage-Controlled Sinusoidal Oscillator Using an OTA-C Simulated Inductor

  • Park, Ji-Mann;Chung, Won-Sup;Park, Young-Soo;Jun, Sung-Ik;Chung, Kyo-Il
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.770-773
    • /
    • 2002
  • Two sinusoidal voltage-controlled oscillators using linear operational transconductance amplifiers are presented in this paper: One is based on the positive-feedback bandpass oscillator model and the other on the negative-feedback Colpitts model. The bandpass VCO consists of a noninverting amplifier and a current-controlled LC-tuned circuit which is realized by two linear OTA's and two grounded capacitors, while the Colpitts VCO consists of an inverting amplifier and a current-controlled LC-tuned circuit realized by three linear OTA's and three grounded capacitors. Prototype circuits have been built with discrete components. The experimental results have shown that the Colpitts VCO has a linearity error of less than 5 percent, a temperature coefficient of less than rm 100 ppm/$^{circ}C$, and a $pm1.5 Hz $frequency drift over an oscillation frequency range from 712Hz to 6.3kHz. A total harmonic distortion of 0.3 percent has been measured for a 3.3kHz oscillation and the corresponding peak-to-peak amplitude was 1V. The experimental results for bandpass VCO are also presented.

  • PDF

PID Autotuning Algorithm Based on Saturation Function Feedback

  • Oh, Seung-Rohk
    • Journal of IKEEE
    • /
    • v.2 no.2 s.3
    • /
    • pp.263-269
    • /
    • 1998
  • We use the slope bounded saturation nonlinear feedback element instead of relay to find ultimate gain and period of linear plant. Saturation nonlinear element reduces the high harmonics of plant output. The reduction of high harmonics improve the accuracy of describing function method used to find ultimate gain and period. We give a simple procedure to find ultimate gain and period with saturation nonlinear element. A PID controller design method with known time delay element is also given, which is very useful when oscillation is not occurred with nonlinear element.

  • PDF

Comb Bandwidth generating in Frequency-shifted Feedback Laser (주파수 이동 되먹임 레이저에서 발생하는 Comb의 대역폭)

  • 지명훈;황대석;김규식;이영우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.535-538
    • /
    • 2002
  • We simulated Frequency-shifted feedback laser using AOM inside the cavity. We analyze instantaneous oscillation frequency at peak spectral intensity and Comb bandwidth of output spectrum from Wigner-Ville distribution of intracavity electric field. The Comb bandwidth is defined as the product of the saturation-broadened bandwidth and the total resonant modes contributing to FSF operation.

  • PDF

A Feedback Control System for Suppressing Crane Oscillations with On-Off Motors

  • Hekman, Keith A.;Singhose, William E.
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.223-233
    • /
    • 2007
  • Crane payloads frequently swing with large amplitude motion that degrades safety and throughput. Open-loop methods have addressed this problem, but are not effective for disturbances. Closed-loop methods have also been used, but generally require the speed of the driving motors to be precisely controlled. This paper develops a feedback control method for controlling motors to cancel the measured payload oscillations by intelligently timing the ensuing on and off motor commands. The effectiveness of the oscillation suppression scheme is experimentally verified on an industrial bridge crane.

Performances of gain-clamped EDFAs with different optical feedback wavelengths for use in WDM networks (WDM네트웍을 위한 광 귀환에 의해 이득이 고정된 EDFA의 귀환 파장에 따른 특성)

  • Kim, Sang-Yong;Chung, Joon;Chae, Cahgn-Joon;Lee, Byoung-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.236-240
    • /
    • 1997
  • We compare feedback wavelength-dependent performances of all-optical gain-clamped 980-nm pumped erbium-doped fiber amplifiers. In a 2.5-Gbps 8-channel WDM system, we have measured and compared gain compressions, signal power variations due to cross-saturation, power penalties caused by relaxation oscillations and noise figures for three different feedback wavelengths - 1532, 1543, and 1565 nm.

  • PDF

Reduced-order Mapping and Design-oriented Instability for Constant On-time Current-mode Controlled Buck Converters with a PI Compensator

  • Zhang, Xi;Xu, Jianping;Wu, Jiahui;Bao, Bocheng;Zhou, Guohua;Zhang, Kaitun
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1298-1307
    • /
    • 2017
  • The constant on-time current-mode controlled (COT-CMC) switching dc-dc converter is stable, with no subharmonic oscillation in its current loop when a voltage ripple in its outer voltage loop is ignored. However, when its output capacitance is small or its feedback gain is high, subharmonic oscillation may occur in a COT-CMC buck converter with a proportional-integral (PI) compensator. To investigate the subharmonic instability of COT-CMC buck converters with a PI compensator, an accurate reduced-order asynchronous-switching map model of a COT-CMC buck converter with a PI compensator is established. Based on this, the instability behaviors caused by output capacitance and feedback gain are investigated. Furthermore, an approximate instability condition is obtained and design-oriented stability boundaries in different circuit parameter spaces are yielded. The analysis results show that the instability of COT-CMC buck converters with a PI compensator is mainly affected by the output capacitance, output capacitor equivalent series resistance (ESR), feedback gain, current-sensing gain and constant on-time. The study results of this paper are helpful for the circuit parameter design of COT-CMC switching dc-dc converters. Experimental results are provided to verify the analysis results.

Influence of UTLS Ozone on the QBO-MJO Connection: A Case Study Using the GloSea5 Model (상부 대류권-하부 성층권 오존이 성층권 준 2년주기 진동과 매든-줄리안 진동 상관성에 미치는 영향: GloSea5 이용 사례)

  • Oh, Jiyoung;Son, Seok-Woo;Back, Seung-Yoon
    • Atmosphere
    • /
    • v.32 no.3
    • /
    • pp.223-233
    • /
    • 2022
  • Recent studies have shown that Madden-Julian Oscillation (MJO) is modulated by Quasi-Biennial Oscillation (QBO) during the boreal winter; MJO becomes more active and predictable during the easterly phase of QBO (EQBO) than the westerly phase (WQBO). Despite growing evidences, climate models fail to capture the QBO-MJO connection. One of the possible reasons is a weak static stability change in the upper troposphere and lower stratosphere (UTLS) by neglecting QBO-induced ozone change in the model. Here, we investigate the possible impact of the ozone-radiative feedback in the tropical UTLS on the QBO-MJO connection by integrating the Global Seasonal Forecasting System 5 (GloSea5) model. A set of experiments is conducted by prescribing either the climatological ozone or the observed ozone at a given year for the EQBO-MJO event in January 2006. The realistic ozone improves the temperature simulation in the UTLS. However, its impacts on the MJO are not evident. The MJO phase and amplitude do not change much when the ozone is prescribed with observation. While it may suggest that the ozone-radiative feedback plays a rather minor role in the QBO-MJO connection, it could also result from model biases in UTLS temperature and not-well organized MJO in the model.

Motion Control of Pneumatic Servo Cylinder Using Neural Network (신경회로망을 이용한 공압 서보실린더의 운동제어)

  • Cho, Seung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.140-147
    • /
    • 2008
  • This paper describes a Neural Network based PD control scheme for motion control of pneumatic servo cylinder. Pneumatic systems have inherent nonlinearities such as compressibility of air and nonlinear frictions present in cylinder. The conventional linear controller is limited in some applications where the affection of nonlinear factor is dominant. A self-excited oscillation method is applied to derive the dynamic design parameters of linear model. Based on the parameters thus identified, a PD feedback compensator is designed first and then a neural network is incorporated. The experiments of a trajectory tracking control using the proposed control scheme are performed and a significant reduction in tracking error is achieved by comparing with those of a PD control.

A Study on the Characteristics of an Oscillating Fluidic Atomizer

  • Kim, K.H.;Kiger, K.;Lee, W.
    • Journal of ILASS-Korea
    • /
    • v.11 no.2
    • /
    • pp.105-112
    • /
    • 2006
  • A unique feature of fluidic atomizers is that the nozzle geometry produces a thin capillary Jet which is forced to oscillate on a 2-dimensional plane through the use of a passive feedback mechanism. The objective of the current work is to characterize the influence of the stagnation pressure at the nozzle exit, jet oscillation and stretching on the breakup properties of the capillary ligament. To achieve this, shadow graph technique is used to measure size, shape, velocity and the number density of the droplets as a function of the position within the spray fan. The breakup length, defined as the radial distance from the breakup point, is analyzed as a function of the non-dimensional parameters. Finally, a kinematic model is developed to simulate the breakup of the oscillating jets at low stagnation pressures. Using the existing jet breakup theories, the model is used to predict the size and diameter distribution of the droplets after primary atomization.

  • PDF