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A Feedback Control System for Suppressing Crane Oscillations
with On-Off Motors

Keith A. Hekman and William E. Singhose

Abstract: Crane payloads frequently swing with large amplitude motion that degrades safety and
throughput. Open-loop methods have addressed this problem, but are not effective for
disturbances. Closed-loop methods have also been used, but generally require the speed of the
driving motors to be precisely controlled. This paper develops a feedback control method for
controlling motors to cancel the measured payload oscillations by intelligently timing the ensuing
on and off motor commands. The effectiveness of the oscillation suppression scheme is
experimentally verified on an industrial bridge crane.

Keywords: Crane control, non-linear feedback, on-oft control, vibration suppression.

1. INTRODUCTION

Cranes are frequently used to transport heavy
objects in a cluttered workspace. One inherent
problem with cranes is that the payload can swing
freely. These oscillations pose safety hazards and can
damage the payload or other objects in the workplace.
Traditionally, an experienced crane operator is
required to keep the oscillations under control. More
recently, various control approaches have been
applied to augment the operator’s skill. These
approaches fall into open and closed-loop categories.

One open-loop approach is input shaping, which
has proven effective on cranes for reducing sway
during and after the move [1-3], including during
hosting [4]. Shapers can be designed with: robustness
to modeling inaccuracies [5] (i.e., cable length
changing the oscillation frequency). Another open-
loop approach is optimal control, which calculates a
motion trajectory off line based on the mathematical
model of the system [6,7]. However, if the model is
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inaccurate, the performance will suffer. This is also
the case with input shaping, but to a lesser degree. In
addition, optimal control has not been used with
current crane operator interfaces, as the path is not
generally known beforehand.

System model uncertainties and external
disturbances provide the motivation for feedback
control. Controllers have used the position and
velocity of the trolley and the cable swing angle [8-
11] or the spreader inclination [12] to reduce payload
oscillations. Wave absorption control adjusts the
trolley velocity to absorb any waves that are being
refurned by the payload, thereby canceling the
oscillation [13]. Feeding a delayed angle measurement
back to the desired position has also been shown
effective in reducing payload oscillations [14].

Sorenson et al. [15,16] developed a control system
that combined input shaping and PD feedback control.
The feedback control used measurements from an
overhead camera and compared the measured crane
response to the modeled shaped response.

Although not directly crane control, Park and
Chang [17] proposed another method to reduce the
effect of a disturbance on a vibrating system. They
developed a “commandless™ input shaping method for
a telescopic handler. To compensate for the vibrations
from unloading the handler, they introduce a pulse
that induces vibration equal in magnitude but opposite
in phase of the vibration caused by unloading. They
show the method’s potential by using it to reduce
vibration by about 75%. However, issues of properly
timing the pulse and ease of calibration appear to be
challenging.

All of the feedback methods described above
require the velocity or acceleration of the crane trolley
to be precisely controlled. The research presented here
is based on using measurement of payload swing to
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generate commands for on-off motors to cancel the
payload swing, making it applicable to a broad range
of cranes. This method could be added to existing
cranes without modifying its motor drive system, but
only passing the operators commands (go forward, go
backwards) through the controller.

2. VECTOR BASED INPUT SHAPER
CALCULATION

Although the controller developed here is closed-
loop, the mathematics behind the controller is similar
to that of vector-based input-shaping calculations, an
open-loop method. The basic concept behind input
shaping is that a later motion can cancel oscillations
excited by an earlier motion. Fig. 1 shows the
response of a lightly damped system to two impulses.
The first impulse excites a decaying oscillation. A
second impulse, if it is properly sized and delayed,
will excite an oscillation equal to the first, but
opposite in magnitude. When this is superimposed
over the first response, the result is no net oscillation
after the second impulse, as seen by the total response
line.

In reality, systems are not moved with impulses. To
create a practical command, the impulse sequence is
convolved with the desired command. By this process
the original command is input-shaped into a command
that will also not produce any residual vibrations after
the shaped command is completed. For example, Fig.
2 shows that when a step command is convolved with
two impulses it produces a staircase command. After
time A, the system will have no residual oscillations.
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Fig. 1. A second impulse can cancel induced vibration.
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Fig. 2. Creating a stair step command by convolution.

Den Hartog [18] and Booker [19] provide a
framework for analyzing oscillations with vectors.
Singhose et al. [20] provide insight into how vibration
cancellation can be achieved in a vector-based
analysis of input shapers. An impulse of magnitude 4,
applied to an undamped second-order system of unit
mass will induce a response of

x(tr)= 4 sinaor. (D

This response has a magnitude 4; and phase angie of
zero. Similarly, if a second impulse of magnitude 4, is
applied at time #,, then it will result in an output of.

x(t)=dysinw(t -ty ) = Ay sin(of — w1y ), >1:.(2)

This response has a magnitude 4, and phase angle
6, = wt, The magnitudes and angles of the responses

can be transformed into vector notation as seen in Fig.
3. Summing these vectors gives a representation of the
total vibration response, as shown in Fig. 4. The
corresponding time response to these impulses is
shown in Fig. 5. After the second impulse, the total
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Fig. 3. Impulse sequence and corresponding vector
diagram.
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Fig. 4. Summing two vectors to get the total response.

A
4 R
A
A

S

¢ ’ time

— response to A 4

—~— total response
...... response to A wens TESpONSE to A R

Fig. 5. Time response of impulses (adapted from [20]).
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Fig. 6. Summing three vectors to get zero vibration.

response matches the amplitude and phase of the
resultant vector A, shown in Fig. 4.

If the system has damping, then this method needs
to be modified. First, the vector angle y changes to

y; =\1-¢Ca,. 3)

Second, damping causes the oscillation amplitude to
decay over time. To account for the decay, the vector
amplitudes must be scaled using the times at which
they occur. To calculate the combined effect from
several impulses, they can be transferred back to =0.
The effective amplitude of the vector at =0 is

Ay = A h=e? @)

with time in % defined by (3).

An input shaper can be designed such that the sum
of all the effective impulses results in zero vibration,
as demonstrated with three vectors in Fig. 6. To
accomplish the cancellation, the 43,4 is chosen to be
the negative of the vector 4 from Fig. 4. To get the
magnitude of this canceling impulse, it must be
converted to the time it will occur using (3) and

—C}’i/\/;_éz. (5)

A3 = A3eﬁre

3. PAYLOAD OSCILLATION
CANCELLATION

The goal of this research is not to create commands
that result in zero residual oscillation for point-to-
point motion. Rather, the measured payload swing is
used to generate on-off commands for motors that will
cancel payload swing once it occurs. When creating
such commands, the magnitude of the motor torque
cannot be arbitrarily chosen, as the motor can only be
turned on and off. However, turning the motor on or
off will cause payload oscillations, which can be
represented as vectors. Unlike a pure impulse, these
vectors will not have zero phase angles, as the motor
does not instantly stop or accelerate to full speed.
Therefore, by the time the command is completed, the
payload will have some angular displacement (6) and

some angular velocity (@), giving a vector

representation similar to Fig. 7. The velocity term is
scaled by the oscillation frequency, since an
undamped system with peak displacement & has a
peak velocity amplitude of @6.

The vector for turning the motor off should have a
similar magnitude, but in the opposite direction,
assuming that the acceleration and deceleration
dynamics are similar. If not, deceleration can be
represented by its own unique amplitude and phase.

The controller developed here will use two motor
command switches (on-off) to eliminate payload
oscillation. The appropriate times of these switches
need to be calculated in real time. The controller
continnally monitors the current level of payload
swing angle and its derivative to determine the proper
time to make the corrective action.

To make this calculation, a vector triangle is used,
as seen in Fig. 8 which shows the two possible
timings to cancel vibrations. The first side of the
triangles in both Fig. 8(a) and 8(b) is the current
oscillation level (4,:). The oscillation amplitudes of
“on” and “off” motor commands form the other two
sides of the triangles. If the three sides can form a
closed triangle, then the oscillation can be forced back

| &/w

Fig. 7. Vector representation for turning the motor on.

yon:a)ton
(b)
Fig. 8. Vector diagram for calculating time to turn
motor off.
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Fig. 9. Time responses from commands represented in
Fig. 8.

to zero (the origin of the vector diagram) with an “off”
motor command at that instant. Assuming that the
human operator wants the crane to be moving and has
the “on” button pressed, then the command sequence
issued by the controller would be “off”, wait, then
“on” again.

Certain components of the triangles are known: the
magnitude of the current oscillation and the effect of
turning the crane on (4,,) and off (4,4). The vector for
Aois fixed at the instant the motor is turned off, while
the direction of the vector for 4,, can be altered by
changing the time until the crane is turned back “on”
again (¢,,). Waiting to initiate the control action
changes the phase angle of the current oscillation
(duip). As stated before, there are two possible
solutions to form this triangle, as shown in Fig. 8. The

time responses of these two solutions are shown in Fig,

9. The solution in Fig. 8(a) is preferable because it has
a smaller angle y,,=a¥, so the wait time until the
motor is turned back on to cancel the oscillations is
shorter. Also, the maximum swing angle of the
response is less, assuming that the existing vibration is
lower than the oscillation induced by a change in state
of the trolley. For these reasons, the timing in Fig. 8(a)
is always used.

To find the phase angle of the current oscillations
(@.ip) for the “off” motor command the intermediate
angles %,, and & shown in Fig. 10 are used. From the
law of cosines,

2 2 2
Aonejf = Aojf + Avib - 2A0ff Avib cosS 5, (6)

2 2 2
A-vib = Aojj’ + Aoneff - 2Aoﬁ’ Aoneff C0S ¥ op - (7)

Solving (7) for y,, yields

At + Ay — A2
Vom = COS_I[ off oneff’ AVlb \] (8)

2Aojj’ Aoneff

If there is no damping, then the solution can be
solved algebraically since A,, .s=A4,,. Note that most
cranes have near zero damping, but if the damping is
significant, then the same equation can be used to

Fig. 10. Angles used to calculate command initiation
time.

solve for ,,; however, since it is nonlinear, it must be
solved iteratively, using

=Aonec7on/V17§2. (9)

(8) is initially calculated using ¢=0. After 7,, is found,
J from Fig. 9 can be calculated using

Aonejj’

2 2 2
i AOﬁ’ + A" - Aoneff
2Aoﬁ" Avib

o =cos”

(10)

Once ¢ is known, the phase angle of the current
oscillation (#:) for the “off” command can be
calculated using

Goip =G —O + 7. (11

After the trolley has stopped, the payload swing
should have the same magnitude as that induced when
the motor is turned back on. The controller then waits
until the angle of the payload oscillation (¢,;) is
opposite in direction to the phase angle of the
oscillation induced by turning the motor on (¢,,.) At
this point, the controller turns the motor back on and
the trolley starts moving again. If the calibration is
perfect, the payload oscillations will be completely
eliminated. If the calibration is imperfect, (and it
always is), then some oscillations will remain, but a
large portion will be canceled out by the control
action.

If the operator desires the crane to be stopped, then
no control buttons are pressed. Any existing payload
oscillations can be canceled by moving the overhead
support either forward or backward. This situation
results in two different phase angles of payload swing
that can be used by the controller, as shown in Fig. 11,
with the subscripts » and f denoting reverse and
forward. In the reverse direction, the diagram is the
same as Fig. 8(a), except the “on” and the “off” are
exchanged. Based on this vector triangle,

2 2 2
Aon + Aoﬁ"ejj‘" - Avib (12)
2A0n Aojf eff’

Yoff = cos ! [
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(forward)

(reverse)

Fig. 11. Vector diagram for when to turn on motor.

2 2 2
1 Aon + Avib - Aoﬂ eff
2Aon Avib
¢vibl :¢on_§+” (14)

J=cos”

, (13)

with & still describing the interior angle between 4,
and 4,,.

For the forward direction, the vector triangle has
the same geometry only it is rotated by x radians.
Therefore,

¢vib2:¢0nf_5+”' (15)

The controller compares the existing vibration
phase angle to (14) and (15) and takes corrective
action at whichever phase angle occurs first. Once the
crane is moving, then the controller waits until the
oscillation phase angle is opposite to that of the
appropriate “off” command, ¢,5 at which point the
trolley motor is stopped.

The maximum oscillation magnitude that can be
canceled using an on-off command is approximately
twice the oscillation induced by an “on” command. If
the current oscillation magnitude is larger than this
value, then the controller calculations are based on the
maximum cancellation level. Above this limit, Jis set
to zero in the calculations for ¢,, and ¢,z As a
precaution, this maximum level can be reduced to
limit the distance moved by the trolley in canceling
the oscillations, thus limiting the angle %,, and f,,,.

Differences between the physical system response
and the response during calibration will result in non-
zero residual oscillations after a single control action.
Very large payloads that slightly decrease the crane
response time could cause these differences. Extreme
calibration error could also lead to an undesirable
limit cycle. Three types of calibration errors that can
occur are in the magnitude of 4,, and 4, in the phase
angle of A4, and 4,4, and a difference in the oscillation
frequency. For the control calculation for when to turn
off the motor, vector diagrams of residual oscillation
for calibration differences in both magnitude and
phase are shown in Fig. 12. The dotted arrows
represent the controller calibration, and the solid

Yon= ,:loff

A Ay ox 'y

(b) Residual oscillation
with error in vector
magnitudes.

(¢) Residual oscillation
with error in vector
angles.

Fig. 12. Residual oscillations from calibration errors
in 4,, and A5

arrows represent the actual induced oscillation by the
motor. The residual oscillation vector is denoted by A4g.
The original vector triangle is shown for reference.
Similar triangles can be constructed when to turn on
the motor when the desired motion is “off”.

The difference in vector magnitude is the least
problematic. A typical control action would be for the
user to press the go button, and then the controller
would perform an off-on sequence to remove the
resulting oscillations. To gage the effectiveness of the
control action, Fig. 13 shows the oscillation reduction
ratio for one control action vs. the ratio of the
modeled amplitude to the actual amplitude. For a ratio
of 1, there is no residual vibration. For regions around
1, there is a significant reduction in the oscillations
after a single control sequence. In all cases, the
oscillations would approach zero asymptotically with
repeated control actions. However, this is not
acceptable, as the crane motion of several oft-on
sequences would result in significant loss of efficiency.
Therefore, an oscillation magnitude set point should
be used to limit the operation of the controller to
moderate and large oscillations.

Differences in the phase calibration of 4,, and A4
cause the most difficulty for the controller. A vector
diagram of the effects was shown in Fig. 12. For each
of the response vectors, the calibration error shifts the
actual response by an angle « from the controller
calculation. For the off-on control response, the off
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on

Fig. 13. Oscillation reduction ratio vs. ratio of
modeled and actual induced vibrations for
one controller action.

command is initiated when the controller calculates
the calibrated vector triangle. The phase shift causes
the ensuing motion to have a different phase, and
amplitude. The controller then switches back on the
trolley when it calculates the current oscillation vector
is opposite to A,,. This results in a nonzero residual
oscillation, since the actual response is shifted by an
angle a. The oscillation magnitude ratio after one on-
off control command is plotted to wverify the
robustness of the control scheme vs. calibration
difference in the phase angle of 4,, and 4,5 Unlike
the magnitude error, the steady state oscillation
magnitude will not be zero, but rather a limit cycle
will occur if no control action threshold is utilized. At
the limit cycle, the oscillation magnitude is not
reduced by the control action, only the phase is
changed. The magnitude of the limit cycle is plotted in
Fig. 14. It is critical that the controller action
threshold be above this limit, or the crane will
continually start and stop. The plot shows that for
angles of -40° and 60° the control action will have a
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Fig. 14. Oscillation reduction ratio vs. calibration
phase error in @,

limit cycle equal to that of initiating the motion of the
trolley. Between these limits, there is a reasonable
reduction in payload swing.

Any error in the estimate of the oscillation
frequency @ creates an error in the estimation of the
current oscillation magnitude. The vector diagram for
this case is shown in Fig. 15. The velocity component
of the vector would be scaled inappropriately, which
gives the horizontal shift between actual oscillation

level A, and the calculated level /iv,.,,. If the

payload is swinging at a constant amplitude, it would
appear as if the magnitude is rising and falling. When
the second control action takes place, the phase would
also be incorrect, causing an improper timing of
turning back on the motor. This shift # can be
calculated using

B =tan™ (%j-qﬁon. (16)

o/,

The resuiting oscillation level reduction can be
plotted vs. the ratio between the actual and modeled
frequency of oscillation as seen in Fig. 16. Since SBis
dependent on ¢,,, the calculation is done using the ¢,,
calculated experimentally for the crane described in
Section 4. As long as the model frequency is larger
than the actual frequency, there is no danger of going

Actual
oscillation
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Model
oscillation
level

Residual oscillation

Control Calculation from error in o

Fig. 15. Residual oscillations from incorrect estima-
tion of oscillation frequency.
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Fig 16. Oscillation reduction ratio vs. ratio of actual
(w) and modeled (@,,) oscillation frequency.
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unstable. The controller also provides a reduction in
oscillation until the model frequency is half the actual
trequency. Good oscillation reduction is achieved with
a frequency error of plus or minus 50% of the model
frequency.

The addition of a large payload mass may cause the
crane to respond differently than the model estimates.
The additional mass would cause the system to
accelerate more slowly, leading to a smaller amplitude
of oscillation A4,,. Also, the slower acceleration will
lead to a positive y which is the direction of greater
stability. Finally, if the additional mass was
significantly lower than the hook, it would reduce the
oscillation frequency @ of the physical system. This
too is in the direction of greater stability. Overall, the
control can be expected to work well over a broad
range of payload sizes.

4. CONTROLLER IMPLEMENTATION

The oscillation cancellation techniques from
Section 3 were implemented ori a large bridge crane at
the Georgia Institute of Technology. Fig. 17 shows a
picture of the crane. As seen in the image, the crane
has a camera mounted on the trolley to measure the
payload swing in the horizontal plane. In addition to
the swing angle, the camera can measure the length of
cable height of the payload. Hekman et al. [15]
provide a detailed development of the use of a camera
to measure the swing angle of the hook.

The crane is 10 meters wide by 43 meters long and
6 meters high, with a maximum load of 10 tons. There
is a Siemens asynchronous induction motor driving
the trolley and two driving the bridge. The motors are
powered by Siemens Simovert Master Drive
converters. A Siemens Simatic $7-300 PLC processes
the input from the crane pendant and the controller
that was implemented on a PC and gives the reference
velocity to the vector control drive. An Ethernet
network enabled communication between the PC,
PLC and vision system.

4.1. System calibration

The controller calculations (8)-(15) require the
magnitude and phase angle of the oscillations caused
by turning the motor “on” and “off’. These can be
calculated by plotting the crane input and the payload
response on the same graph, as in Fig. 18. The top of
Fig. 18 shows the motor being turned off at about 5.5
seconds while the crane is moving forward. The
trolley takes about one second to come to rest after the
command is issued. The bottom of the figure shows
the payload swing angle & and the oscillation level m
given by

m=\6? +(6/a)’, (17)

Fig. 17. Bridge crane.
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Fig. 18. Measured bridge crane response to an “off”
command.

where @ is the frequency of the payload oscillation.

The times of the rising zero crossing of the swing
angle before (1;) and after (¢,) the input change (¢,
were recorded. The zero crossing at about 6 seconds
was not used, because the motor speed was in
transition. The phase angles of the oscillation before
(@) and after (¢,) the input change can be calculated
using

2l +T, 1) 2ty =T, 1)
¢b - Tp ’ ¢a - Tp ’ (18)

where T, is the time of one oscillation period. The
vector representing the input transition can be
calculated using a complex number representation
with the real portion being the velocity component
0/w and the imaginary part the position component
6. The input transition vector is given by
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Aoffei%ﬁ = mae_% - mbe‘i¢b, 19)

where mj, and m, are the amplitudes of the oscillation
before and after the transition. A similar procedure can
be used to determine the “off” vector in the reverse
direction and the “on” vector in both the forward and
reverse directions.

Graphically, the induced oscillation vectors can be
plotted for starting and stopping, for both forward and
reverse directions, as seen in Fig. 19. For a 4 meter
cable length, on average the oscillation had an
amplitude of 0.052 radians at an angle of ¢=1.11(+m)
radians (63.6 (+180)°).

To examine the variation in the response of the
crane and payload under for different operating
conditions, the motion of the crane and payload was
recorded during “on” and “off” commands. The tests
were performed at two different cable lengths (3.5m
and 5.5m) and additional payload masses between
zero and 227 kg (500 lbs) above the nominal hook
weight of 50 kg (110 1bs). These represent typical
operating conditions of a crane an industrial setting.
The vectors A,, and A, were calculated at each
combination, as well as the oscillation frequency.

Fig. 20 shows the variation in the vector magnitude.
The data does not show any strong trends for the
magnitude variation over the range of mass tested.
The maximum ratio between the A, /A,, is1.37 which
has a residual oscillation level of less than 10% of a
single state transition based on Fig. 13.

Fig. 21 shows the variation in the vector phase
angle for the different test conditions. There is about a
20° shift in phase for a single height and a 43° over
both heights. For the +-10° shift, from Fig. 14, the
residual oscillation level of about 15% is quite good.
At +-22°, the residual oscillation level of about 50%
could be acceptable, though not preferable. Therefore,
the controller effectiveness is improved by
incorporating the payload height into its calculations.

Fig. 22 shows the variation in the oscillation

00571
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wmem= forward start
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Fig. 19. Oscillation vectors for different commands.

frequency caused by changes in payload mass and
cable length. At a specific cable length, the ratio
between the minimum and maximum frequency is
about 0.9, which according to Fig. 16, will produce
negligible residual oscillations. If the cable length is
not taken into account in the controller calculations,
then the ratio is 0.73, which has a residual oscillation
level of about 15% of a single state change A4,,.
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Fig 20. Vector magnitude variation with payload
mass and cable length /.
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mass and cable length /.
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4.2. Controller response for user motion

Fig. 23 shows a typical crane motion and the
corresponding payload swing. The *“go” button is
pressed at about 2 seconds and is released at about 8
seconds, as indicated by the commanded velocity line.
The initial motion of the trolley caused the payload to
swing with a magnitude of 3°. When the trolley
stopped, more oscillations were excited, increasing the
total magnitude of payload swing to about 4°. At a
cable length of 5.5m the 4° of swing correlates to over
a half meter of peak-to-peak motion. Further actions
by the user could either excite more oscillations or
cancel out the oscillations, depending on their timing.
With an inexperienced operator, these oscillations can
quickly become quite large.

Fig. 24 shows the response of the controlled crane
to a user request to move backward. In the top plot in
Fig. 24, the user input is shown using a line with
circles. The resulting trolley speed is shown with a
dashed line. As shown in the middle plot of Fig. 24,
the crane motion excites oscillations in the payload.
However, the controller makes corrective actions at
about 6 seconds and at about 14 seconds. Both actions
are effective at reducing the payload swing, both
during the requested motion and after the crane has
been stopped. The bottom part of Fig. 24 shows the
phase angle of the oscillations given by

4= tan”! [9.—7;]. (20)

The bottom plot also shows the switch angle
calculated from (11)-(15). At the initial crossing (near
2 seconds), the oscillation amplitude is not large
enough (1.7°) to trigger a control action. It is one
period later (at about 6 seconds) that the oscillation-
canceling control action takes place. At this point, the
controller briefly turns off the crane motor, as seen in
the top plot of Fig. 24. At this point the switch angle
jumps to ¢@,,. At 7 seconds, this angle occurs, and the
crane motor is turned back on. When the trolley
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Fig. 23. Typical uncontrolled response.
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Fig. 24. Response to an operator commanding reverse
motion.

reaches full speed (at about 8 seconds), the oscillation
level is quite small (about a half degree) as shown in
the middle plot of Fig. 24.

The operator stops pressing the reverse button at
about 11 seconds, as shown by the solid line in the top
plot of Fig. 24. When the trolley stops, oscillation is
again induced. When the desired command is no
motion, there are two switch angle lines given by (14)
and (15), as the crane can cancel the oscillation by
going either forwards or backwards. The first switch
angle occurs at a little after 13 seconds, and the crane
moves forward slightly to cancel the oscillations.
Once the crane is back at rest very little oscillation
remains.

4.3. Controller response for disturbance rejection

Fig. 25 shows the response of the crane to a
disturbance when the trolley is at rest. At a little after
1 second, the payload was disturbed. At about 3
seconds, the oscillation phase angle matched the
switch angle condition, and the controller commanded
the trolley to move forward. At a little past 4 seconds,
the phase angle matched again, and the trolley was
commanded to stop. When the trolley came to rest at
about 5.5 seconds, the payload swing was less than
one degree.

Fig. 26 shows the response to a very large
disturbance. At about 1 second, the payload was
pushed with a disturbance that is larger than a single
on-oft command could suppress. In this case, the first
on-off control action starting at about 2.5 seconds
suppressed the maximum possible oscillation, and



232 Keith A. Hekman and William E. Singhose

0.4
F A™
w I
+ 02
£ J’ !\
“" r'.’ R}
3 g % bR
E’-' seemess yser input
g 02 control
----- motor vel.
0.4 L L s " L T I —
o ———
= 5 ;! Y payload ang.
Rt ) S| === oscillation amp.
= 4
R=
=
w
=3
(1]
o
b
©
=

=] S, A e
osciliation ang.
switch ang.

phase angle (%)

time (s)

Fig. 25. Response to a disturbance while crane is at

rest.
0.4
w
£ 02
T 0 =
@ e yser input
g 0.2 — control ﬂ
----- motor vel.
0.4 T

'
4]

payload swing (%)
o

~— payload ang.
“““ oscillation amp.

360
D) 270
S 180 r -
c '
© )
o 90 i
S 0 . oscillation ang. i
| === switch ang.
gl ¥V, . e
012 3 4567891011213 14

time (s)

Fig. 26. Response to a large disturbance.

then the second control action canceled the remaining
oscillation by moving the trolley in the opposite
direction. This resulted in little oscillation after the
crane had completed the second command at 6
seconds.

The controller can also eliminate disturbances while
the crane is moving, as seen in Fig. 27. While the
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Fig. 27. Response to a disturbance when moving.

crane was moving forward with little oscillation, the
payload was disturbed at about 1 second. The
controller initially gives a stop command at about 1.5
seconds, which ceases shortly afterward (before the
oscillation phase angle matched the switch angle, but
based on the time safety factor from y) However,
the payload was still being disturbed so the
oscillations were not eliminated. The controller then
waited until the appropriate phase angle, and then
stopped the trolley again at about 6 seconds. At the
appropriate time (7.5 seconds), the trolley accelerated
resulting in little oscillation when the crane had
returned to full speed.

5. CONCLUSION

A control strategy has been developed for motors
using simple on-off commands to eliminate payload
oscillations for bridge cranes. The control uses the
computer vision measured swing angle of the payload,
and its derivative, to decide when to turn the motors
on and off. The method can reduce the oscillation
when the crane is moving or at rest. The strategy was
implemented on an industrial bridge crane. Numerous
experiments demonstrated the control system
effectiveness under a broad range of conditions.
Future work could include verification of the control
scheme on open loop AC induction motors and using
the measured responses to adaptively modify the 4,,
and A,y vectors in the algorithm. Implementing the
algorithm entirely within the camera is another
possible extension of this work.
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