• 제목/요약/키워드: Feed-forward 신경망

검색결과 52건 처리시간 0.025초

깊은 신경망을 이용한 오디오 이벤트 검출 (Audio Event Detection Using Deep Neural Networks)

  • 임민규;이동현;박호성;김지환
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권1호
    • /
    • pp.183-190
    • /
    • 2017
  • 본 논문에서는 깊은 신경망을 이용한 오디오 이벤트 검출 방법을 제안한다. 오디오 입력의 매 프레임에 대한 오디오 이벤트 확률을 feed-forward 신경망을 적용하여 생성한다. 매 프레임에 대하여 멜 스케일 필터 뱅크 특징을 추출한 후, 해당 프레임의 전후 프레임으로부터의 특징벡터들을 하나의 특징벡터로 결합하고 이를 feed-forward 신경망의 입력으로 사용한다. 깊은 신경망의 출력층은 입력 프레임 특징값에 대한 오디오 이벤트 확률값을 나타낸다. 연속된 5개 이상의 프레임에서의 이벤트 확률값이 임계값을 넘을 경우 해당 구간이 오디오 이벤트로 검출된다. 검출된 오디오 이벤트는 1초 이내에 동일 이벤트로 검출되는 동안 하나의 오디오 이벤트로 유지된다. 제안된 방법으로 구현된 오디오 이벤트 검출기는 UrbanSound8K와 BBC Sound FX자료에서의 20개 오디오 이벤트에 대하여 71.8%의 검출 정확도를 보였다.

웨이블렛 신경망을 이용한 전역근사 메타모델의 성능비교 (Global Function Approximations Using Wavelet Neural Networks)

  • 신광호;이종수
    • 대한기계학회논문집A
    • /
    • 제33권8호
    • /
    • pp.753-759
    • /
    • 2009
  • Feed-forward neural networks have been widely used as function approximation tools in the context of global approximate optimization. In the present study, a wavelet neural network (WNN) which is based on wavelet transform theory is suggested as an alternative to a traditional back-propagation neural network (BPN). The basic theory of wavelet neural network is briefly described, and approximation performance is tested using a nonlinear multimodal function and a composite rotor blade analysis problem. Laplacian of Gaussian function, Mexican function, and Morlet function are considered during the construction of WNN architectures. In addition, approximation results from WNN are compared with those from BPN.

신경망을 이용한 실시간 고장 진단 시스템 (On-Line Fault Diagnosis System using Neural Network)

  • 김문성;유승선;소정훈;곽훈성
    • 한국통신학회논문지
    • /
    • 제26권11C호
    • /
    • pp.75-84
    • /
    • 2001
  • 본 논문에서는 신경망을 이용한 실시간 고장 검출 및 진단(FDD : Fault Detection and Diagnosis) 시스템을 제안한다. 제안된 시스템은 공조 시스템(FDD : Air Handling Unit)에서 발생 가능한 여러 고장들을 검출하고 진단할 수 있다. 고장 검출 및 진단 기법으로 3층 구조의 전방향(feed-forward) 신경망을 사용하였고, 여기에 사용된 학습 방법은 역전파(back-propagation) 학습 알고리즘이다. 공조 시스템에 적용된 실시간 고장 검출 및 진단 시스템은 비주얼 C++와 비주얼 베이직을 사용하여 구현하였다. 제안된 고장 검출 및 진단 시스템을 실제 운전 중인 공조 시스템에 적용하여 실험하였고, 정확한 고장 검출 및 진단이 수행됨을 실험 결과로서 입증하였다.

  • PDF

학습된 지식의 분석을 통한 신경망 재구성 방법 (Restructuring a Feed-forward Neural Network Using Hidden Knowledge Analysis)

  • 김현철
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권5호
    • /
    • pp.289-294
    • /
    • 2002
  • 다층신경회로망 구조의 재구성은 회로망의 일반화 능력이나 효율성의 관점에서 중요한 문제로 연구되어왔다. 본 논문에서는 신경회로망에 학습된 은닉 지식들을 추출하여 조합함으로써 신경회로망의 구조를 재구성하는 새로운 방법을 제안한다. 먼저, 각 노드별로 학습된 대표적인 지역 규칙을 추출하여 각 노드의 불필요한 연결구조들을 제거한 후, 이들의 논리적인 조합을 통하여 중복 또는 상충되는 노드와 연결구조를 제거한다. 이렇게 학습된 지식을 분석하여 노드와 연결구조를 재구성한 신경회로망은 처음의 신경회로망에 비하여 월등히 감소된 구조 복잡도를 가지며 일반적으로 더 우수한 일반화 능력을 가지게 됨을 실험결과로서 제시하였다.

가변부하시스템에서의 적응제어에 관한 연구 (A study on the adaptive control used in a system with variable load)

  • 강대규;전내석;이성근;김윤식;안병원;박영산
    • 한국정보통신학회논문지
    • /
    • 제5권6호
    • /
    • pp.1122-1127
    • /
    • 2001
  • 본 논문에서는 공기압축기 구동용 유도전동기를 대상으로 부하토크관측기와 신경망을 이용 한 피드포워드 보상기를 결합한 속도 적응제어시스템을 제안한다. 공기압축기를 구동하는 전동기는 피스톤 의 상하운동에 의해 급격한 가변형의 부하를 받게 되고, 이로 인해 운전특성에 문제가 발생된다. 신경망 추정기를 이용하여 속도 제어기의 이득을 실시간으로 동조함으로써 전동기의 속도제어 특성을 개선한다. 제안된 시스템에 대한 이론적 해석과 시뮬레이션을 통해 그 타당성을 검정한다.

  • PDF

가변부하시스템에서의 적응제어에 관한 연구 (A study on the adaptive control used in a system with variable load)

  • 강대규;전내석;이성근;김윤식;안병원;박영산
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2001년도 추계종합학술대회
    • /
    • pp.397-400
    • /
    • 2001
  • 본 논문에서는 공기압축기 구동용 유도전동기를 대상으로 부하토크관측기와 신경망을 이용한 피드포워드 보상기를 결합한 속도 적응제어시스템을 제안한다. 공기압축기를 구동하는 전동기는 피스톤의 상하운동에 의해 급격한 가변형의 부하를 받게 되고, 이로 인해 운전특성에 문제가 발생된다. 신경망 추정기를 이용하여 속도 제어기의 이득을 실시간으로 동조함으로써 전동기의 속도제어 특성을 개선한다. 제안된 시스템에 대한 이론적 해석과 시뮬레이션을 통해 그 타당성을 검정한다.

  • PDF

비선형 패턴 분류를 위한 FPGA를 이용한 신경회로망 시스템 구현 (Implementation of a Feed-Forward Neural Network on an FPGA Chip for Classification of Nonlinear Patterns)

  • 이운규;김정섭;정슬
    • 대한전자공학회논문지SD
    • /
    • 제45권1호
    • /
    • pp.20-27
    • /
    • 2008
  • 본 논문에서는 비선형 패턴 분류를 위해 FPGA 칩에 신경회로망을 구현하였다. 병렬처리 연산을 위해 순방향 신경회로망이 구현 되었다. 신경망의 학습을 off-line으로 한 다음에 가중치 값들을 저장하여 사용한다. 예로서, AND와 XOR 논리의 패턴 구분이 수행된다. 실험결과를 통해 FPGA에 구현된 신경회로망이 잘 작동하는 것을 검증하였다.

응급실 방문 노인 환자의 사망률 예측 (Mortality Prediction of Older Adults Admitted to the Emergency Department)

  • 박준혁;이성욱
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권7호
    • /
    • pp.275-280
    • /
    • 2018
  • 세계 인구의 고령화가 진행되는 오늘날 노인들을 위한 의료 서비스의 수요는 점차 증가할 것으로 보인다. 특히, 응급실을 방문하는 노인 환자는 일반 환자보다 다양한 질병을 갖고 있거나, 특이한 증상을 호소하는 등 복잡한 의학적, 사회적 및 신체적 문제를 가지고 있는 경우가 많다. 우리는 65세 이상의 응급실을 방문한 노인 환자의 사망률 예측을 위해 연령, 성별, 혈압, 체온, 혈액검사, 주증상명 등의 의료 데이터를 사용하였다. Feed Forward 신경망과 지지벡터기계를 각각 학습하여 사망률을 예측하고 그 성능을 비교하였다. 1개의 은닉층을 사용한 Feed Forward 신경망의 실험결과가 가장 좋았으며, 이 때 F1 점수는 52.0%, AUC는 88.6%이다. 좀 더 좋은 의료 자질을 추출하여 제안 시스템의 성능을 향상시킨다면 응급실에 방문한 노인 환자들을 위한 효과적이고 신속한 의료 자원 배분을 통해 더 좋은 의료 서비스를 제공할 수 있을 것이다.

사물인터넷을 위한 신경망 기반의 지능형 액세스 포인트 시스템의 구현 (An Implementation of an Intelligent Access Point System Based on a Feed Forward Neural Network for Internet of Things)

  • 이영찬;이소연;김대영
    • 인터넷정보학회논문지
    • /
    • 제20권5호
    • /
    • pp.95-104
    • /
    • 2019
  • 사물인터넷 서비스를 위해 다양한 종류의 디바이스가 사용되고 있으며, 사물인터넷 디바이스들은 주로 비면허 대역의 주파수를 사용하는 통신기술을 활용하고 있다. 비면허 대역의 통신기술에는 몇 가지가 있지만, 현재 WiFi가 가장 대표적으로 사용된다. 사물인터넷 서비스를 위해 사용되는 디바이스는 제한된 기능을 가진 디바이스부터 스마트폰까지 컴퓨팅 리소스가 다양하고, WiFi 와 같은 무선 네트워크를 통해 서비스를 제공한다. 대부분의 사물인터넷 장치는 네트워크 제어를 위한 복잡한 연산을 할 수 없기 때문에 신호세기에 의존하여 WiFi 액세스 포인트를 선정하고 있다. 이는 사물인터넷 서비스 효율을 떨어뜨리는 원인으로 작용한다. 따라서, 본 논문에서는 액세스 포인트를 통해 사물이터넷 디바이스의 WiFi 연결을 제어할 수 있는 지능형 액세스 포인트 시스템을 구현한다. 사물인터넷 디바이스에서 측정된 네트워크 정보를 통해 액세스 포인트에서 피드 포워드 신경망 (feed forward neural network) 알고리즘을 사용하여 학습을 하고, 네트워크 연결 상태를 예측하여 디바이스의 WiFi연결을 제어한다. 이렇게 함으로써 사물인터넷 디바이스의 서비스 효율을 높일 수 있다.

인공신경망을 이용한 대대전투간 작전지속능력 예측 (A study on Forecasting The Operational Continuous Ability in Battalion Defensive Operations using Artificial Neural Network)

  • 심홍기;김승권
    • 지능정보연구
    • /
    • 제14권3호
    • /
    • pp.25-39
    • /
    • 2008
  • 본 연구는 인공신경망을 이용하여 대대급 방어 작전에서 임의시점에서의 작전지속능력을 예측하는 데 있다. 전투결과에 대한 수학적 모델링은 이를 위한 많은 요인들이 가지는 시?공간적 가변성으로 인해 전투력을 평가하는데 많은 문제점이 있었다. 따라서 이번 연구에서는 대대 전투지휘훈련간 각 부대의 생존률을 전방향 다층 신경망(Feed-Forward Multilayer Perceptrons, MLP)과 일반 회귀신경망(General Regression Neural Network, GRNN)모형에 적용하여 임무달성 여부를 예측하였다. 실험 결과 매개변수들의 비선형적인 관계에도 불구하고 각각 82.62%, 85.48%의 적중률을 보여 일반회귀신경망 모형이 지휘관이 상황을 인식하고 예비대 투입 우선순위 선정 등 실시간 지휘결심을 하는데 도움을 줄 수 있는 방법임을 보여준다.

  • PDF