본 논문에서는 깊은 신경망을 이용한 오디오 이벤트 검출 방법을 제안한다. 오디오 입력의 매 프레임에 대한 오디오 이벤트 확률을 feed-forward 신경망을 적용하여 생성한다. 매 프레임에 대하여 멜 스케일 필터 뱅크 특징을 추출한 후, 해당 프레임의 전후 프레임으로부터의 특징벡터들을 하나의 특징벡터로 결합하고 이를 feed-forward 신경망의 입력으로 사용한다. 깊은 신경망의 출력층은 입력 프레임 특징값에 대한 오디오 이벤트 확률값을 나타낸다. 연속된 5개 이상의 프레임에서의 이벤트 확률값이 임계값을 넘을 경우 해당 구간이 오디오 이벤트로 검출된다. 검출된 오디오 이벤트는 1초 이내에 동일 이벤트로 검출되는 동안 하나의 오디오 이벤트로 유지된다. 제안된 방법으로 구현된 오디오 이벤트 검출기는 UrbanSound8K와 BBC Sound FX자료에서의 20개 오디오 이벤트에 대하여 71.8%의 검출 정확도를 보였다.
Feed-forward neural networks have been widely used as function approximation tools in the context of global approximate optimization. In the present study, a wavelet neural network (WNN) which is based on wavelet transform theory is suggested as an alternative to a traditional back-propagation neural network (BPN). The basic theory of wavelet neural network is briefly described, and approximation performance is tested using a nonlinear multimodal function and a composite rotor blade analysis problem. Laplacian of Gaussian function, Mexican function, and Morlet function are considered during the construction of WNN architectures. In addition, approximation results from WNN are compared with those from BPN.
본 논문에서는 신경망을 이용한 실시간 고장 검출 및 진단(FDD : Fault Detection and Diagnosis) 시스템을 제안한다. 제안된 시스템은 공조 시스템(FDD : Air Handling Unit)에서 발생 가능한 여러 고장들을 검출하고 진단할 수 있다. 고장 검출 및 진단 기법으로 3층 구조의 전방향(feed-forward) 신경망을 사용하였고, 여기에 사용된 학습 방법은 역전파(back-propagation) 학습 알고리즘이다. 공조 시스템에 적용된 실시간 고장 검출 및 진단 시스템은 비주얼 C++와 비주얼 베이직을 사용하여 구현하였다. 제안된 고장 검출 및 진단 시스템을 실제 운전 중인 공조 시스템에 적용하여 실험하였고, 정확한 고장 검출 및 진단이 수행됨을 실험 결과로서 입증하였다.
다층신경회로망 구조의 재구성은 회로망의 일반화 능력이나 효율성의 관점에서 중요한 문제로 연구되어왔다. 본 논문에서는 신경회로망에 학습된 은닉 지식들을 추출하여 조합함으로써 신경회로망의 구조를 재구성하는 새로운 방법을 제안한다. 먼저, 각 노드별로 학습된 대표적인 지역 규칙을 추출하여 각 노드의 불필요한 연결구조들을 제거한 후, 이들의 논리적인 조합을 통하여 중복 또는 상충되는 노드와 연결구조를 제거한다. 이렇게 학습된 지식을 분석하여 노드와 연결구조를 재구성한 신경회로망은 처음의 신경회로망에 비하여 월등히 감소된 구조 복잡도를 가지며 일반적으로 더 우수한 일반화 능력을 가지게 됨을 실험결과로서 제시하였다.
본 논문에서는 공기압축기 구동용 유도전동기를 대상으로 부하토크관측기와 신경망을 이용 한 피드포워드 보상기를 결합한 속도 적응제어시스템을 제안한다. 공기압축기를 구동하는 전동기는 피스톤 의 상하운동에 의해 급격한 가변형의 부하를 받게 되고, 이로 인해 운전특성에 문제가 발생된다. 신경망 추정기를 이용하여 속도 제어기의 이득을 실시간으로 동조함으로써 전동기의 속도제어 특성을 개선한다. 제안된 시스템에 대한 이론적 해석과 시뮬레이션을 통해 그 타당성을 검정한다.
본 논문에서는 공기압축기 구동용 유도전동기를 대상으로 부하토크관측기와 신경망을 이용한 피드포워드 보상기를 결합한 속도 적응제어시스템을 제안한다. 공기압축기를 구동하는 전동기는 피스톤의 상하운동에 의해 급격한 가변형의 부하를 받게 되고, 이로 인해 운전특성에 문제가 발생된다. 신경망 추정기를 이용하여 속도 제어기의 이득을 실시간으로 동조함으로써 전동기의 속도제어 특성을 개선한다. 제안된 시스템에 대한 이론적 해석과 시뮬레이션을 통해 그 타당성을 검정한다.
본 논문에서는 비선형 패턴 분류를 위해 FPGA 칩에 신경회로망을 구현하였다. 병렬처리 연산을 위해 순방향 신경회로망이 구현 되었다. 신경망의 학습을 off-line으로 한 다음에 가중치 값들을 저장하여 사용한다. 예로서, AND와 XOR 논리의 패턴 구분이 수행된다. 실험결과를 통해 FPGA에 구현된 신경회로망이 잘 작동하는 것을 검증하였다.
세계 인구의 고령화가 진행되는 오늘날 노인들을 위한 의료 서비스의 수요는 점차 증가할 것으로 보인다. 특히, 응급실을 방문하는 노인 환자는 일반 환자보다 다양한 질병을 갖고 있거나, 특이한 증상을 호소하는 등 복잡한 의학적, 사회적 및 신체적 문제를 가지고 있는 경우가 많다. 우리는 65세 이상의 응급실을 방문한 노인 환자의 사망률 예측을 위해 연령, 성별, 혈압, 체온, 혈액검사, 주증상명 등의 의료 데이터를 사용하였다. Feed Forward 신경망과 지지벡터기계를 각각 학습하여 사망률을 예측하고 그 성능을 비교하였다. 1개의 은닉층을 사용한 Feed Forward 신경망의 실험결과가 가장 좋았으며, 이 때 F1 점수는 52.0%, AUC는 88.6%이다. 좀 더 좋은 의료 자질을 추출하여 제안 시스템의 성능을 향상시킨다면 응급실에 방문한 노인 환자들을 위한 효과적이고 신속한 의료 자원 배분을 통해 더 좋은 의료 서비스를 제공할 수 있을 것이다.
사물인터넷 서비스를 위해 다양한 종류의 디바이스가 사용되고 있으며, 사물인터넷 디바이스들은 주로 비면허 대역의 주파수를 사용하는 통신기술을 활용하고 있다. 비면허 대역의 통신기술에는 몇 가지가 있지만, 현재 WiFi가 가장 대표적으로 사용된다. 사물인터넷 서비스를 위해 사용되는 디바이스는 제한된 기능을 가진 디바이스부터 스마트폰까지 컴퓨팅 리소스가 다양하고, WiFi 와 같은 무선 네트워크를 통해 서비스를 제공한다. 대부분의 사물인터넷 장치는 네트워크 제어를 위한 복잡한 연산을 할 수 없기 때문에 신호세기에 의존하여 WiFi 액세스 포인트를 선정하고 있다. 이는 사물인터넷 서비스 효율을 떨어뜨리는 원인으로 작용한다. 따라서, 본 논문에서는 액세스 포인트를 통해 사물이터넷 디바이스의 WiFi 연결을 제어할 수 있는 지능형 액세스 포인트 시스템을 구현한다. 사물인터넷 디바이스에서 측정된 네트워크 정보를 통해 액세스 포인트에서 피드 포워드 신경망 (feed forward neural network) 알고리즘을 사용하여 학습을 하고, 네트워크 연결 상태를 예측하여 디바이스의 WiFi연결을 제어한다. 이렇게 함으로써 사물인터넷 디바이스의 서비스 효율을 높일 수 있다.
본 연구는 인공신경망을 이용하여 대대급 방어 작전에서 임의시점에서의 작전지속능력을 예측하는 데 있다. 전투결과에 대한 수학적 모델링은 이를 위한 많은 요인들이 가지는 시?공간적 가변성으로 인해 전투력을 평가하는데 많은 문제점이 있었다. 따라서 이번 연구에서는 대대 전투지휘훈련간 각 부대의 생존률을 전방향 다층 신경망(Feed-Forward Multilayer Perceptrons, MLP)과 일반 회귀신경망(General Regression Neural Network, GRNN)모형에 적용하여 임무달성 여부를 예측하였다. 실험 결과 매개변수들의 비선형적인 관계에도 불구하고 각각 82.62%, 85.48%의 적중률을 보여 일반회귀신경망 모형이 지휘관이 상황을 인식하고 예비대 투입 우선순위 선정 등 실시간 지휘결심을 하는데 도움을 줄 수 있는 방법임을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.