• Title/Summary/Keyword: Feed distance

Search Result 144, Processing Time 0.024 seconds

Integrated Guidance and Control Design for the Near Space Interceptor

  • WANG, Fei;LIU, Gang;LIANG, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.278-294
    • /
    • 2015
  • Considering the guidance and control problem of the near space interceptor (NSI) during the terminal course, this paper proposes a three-channel independent integrated guidance and control (IGC) scheme based on the backstepping sliding mode and finite time disturbance observer (FTDO). Initially, the three-channel independent IGC model is constructed based on the interceptor-target relative motion and nonlinear dynamic model of the interceptor, in which the channel coupling term and external disturbance are regarded as the total disturbances of the corresponding channel. Then, the FTDO is introduced to estimate the target acceleration and control system loop disturbances, and the feed-forward compensation term based on the estimated values is employed to effectively remove the effect of disturbances in finite time. Subsequently, the IGC algorithm based on the backstepping sliding mode is also given to obtain the virtual control moment. Furthermore, a robust least-squares weighted control allocation (RLSWCA) algorithm is employed to distribute the previous virtual control moment among the corresponding aerodynamic fins and reaction jets, which also takes into account the uncertainty in the control effectiveness matrix. Finally, simulation results show that the proposed IGC method can obtain the small miss distance and smooth interceptor trajectories.

A Folded Label Tag for Metallic Environment over UHF Band (금속환경에 적용가능한 UHF대역 라벨 태그의 구현 및 성능평가)

  • Eum, Tae-Hwan;Moon, Byung Hyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.2
    • /
    • pp.19-24
    • /
    • 2015
  • In this paper, a folded label type RFID tag antenna is designed and produecd for metellic environment over UHF band. Since performance of regular label type RFID tag is seriously degraded for the metallic environment, a folded label tag is proposed to improve the performance. The proposed tag is operating at 910MHz by using inductive T Matching Feed and simulated in HFSS by Ansoft. The actual size is $65{\times}23{\times}3(mm)$ with the impedance of $52-j158{\Omega}$. The maximum distance of identification for the proposed tag is measured as 5.5 meters.

A Tolerant Rough Set Approach for Handwritten Numeral Character Classification

  • Kim, Daijin;Kim, Chul-Hyun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.288-295
    • /
    • 1998
  • This paper proposes a new data classification method based on the tolerant rough set that extends the existing equivalent rough set. Similarity measure between two data is described by a distance function of all constituent attributes and they are defined to be tolerant when their similarity measure exceeds a similarity threshold value. The determination of optimal similarity theshold value is very important for the accurate classification. So, we determine it optimally by using the genetic algorithm (GA), where the goal of evolution is to balance two requirements such that (1) some tolerant objects are required to be included in the same class as many as possible. After finding the optimal similarity threshold value, a tolerant set of each object is obtained and the data set is grounded into the lower and upper approximation set depending on the coincidence of their classes. We propose a two-stage classification method that all data are classified by using the lower approxi ation at the first stage and then the non-classified data at the first stage are classified again by using the rough membership functions obtained from the upper approximation set. We apply the proposed classification method to the handwritten numeral character classification. problem and compare its classification performance and learning time with those of the feed forward neural network's back propagation algorithm.

  • PDF

Design of an Planar Inverted -F Antenna With Wide band Characteristic (광대역 특성을 갖는 역 F형 내장형 안테나의 설계)

  • Jung, Hee-Kyung;Park, Hoon;Choi, Jae-Hoon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.249-254
    • /
    • 2005
  • This paper presents the design of a novel small and wide band planar inverted F-antenna which simultaneously covers GSM900/GPS/DCS1800/DCS1900/DMB service. The proposed antenna consisting of a main patch with rectangular slit, strip 1 and strip 2, occupied the total volume of.$15\times36\times6mm^3$. A very wide impedance bandwidth characteristic was achieved by optimizing both the distance between the feed line and short strip and the length of rectangular slit on the main patch. The commercial electromagnetic software, CST Microwave Studio, is used to design the structure. The maximum gains at the frequencies of 900, 1575, 1800, 1900, and 2600 MHz were 2.07, 1.07, 1.69 and 0.55, -1.99 dBi, respectively. The overall shape of the radiation patterns is suitable for mobile communication application.

  • PDF

The Prediction of Etching Characteristics Using Monte-Carlo Simulation in Etching Process of Lead-Frame (Lead-Frame 에칭공정에서 몬테카를로 시뮬레이션을 이용한 에칭특성 예측)

  • Jeong Heung-Cheol;Choi Gyung-Min;Kim Duck-Jool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.72-79
    • /
    • 2006
  • The objective of this work is to simulate the etching characteristics for the optimization on the etching process of Lead-Frame. The etching characteristics such as etching factor, etching uniformity were investigated under different the actual operating conditions. The correlation between the etching characteristics and the spray ones were analyzed to simulate the etching characteristics in the etching process. To improve the etching characteristics in the etching process, effects of the various operating conditions such as pressure, distance from nozzle tip, pipe pitch, and feed speed should be understood in detail. The spray characteristics obtained by experiment using PDA system were simulated by the Monte-Carlo simulation. The etching process model was coded by Java language. It was found that the spray characteristics were correlated with the etching ones and simulation results generally agreed well with the measured results of etching characteristics in the etching process of Lead-Frame. The optimal operating parameters were successfully found under variable conditions.

A Study on the Machinability Evaluation According to Lubrication Conditions and Taper Angle for Turning of SCM440 (SCM440 의 선삭에서 윤활조건과 테이퍼 각에 따른 가공성 평가에 관한 연구)

  • Choi, Min-Seok;Kim, Dong-Hyeon;Hwang, Seong-Ju;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.35-42
    • /
    • 2014
  • Recently, in industry field, many researchers are looking for ways to reduce the use of lubricant because of environmental and economical reasons. MQL lubrication is one of many lubrication technologies. The aim of this study is to evaluate the machinability considering lubrication methods and taper angles of workpieces for turning of SCM440. Workpieces of two shapes such as workpiece with and without taper angle are used. And two lubrication methods such as MQL and Wet have been considered. And cutting force and surface roughness are used as characteristic values. Cutting speed, feed rate, injection angle and distance are used as design parameters. The characteristic values were statistically analyzed by Taguchi method. From the results, main effects plot and importance of each parameter according to conditions are analyzed. Finally, this study has been suggested the optimum machining conditions according to the lubrication methods, machining conditions and shape of workpiece.

Theoretical and Experimental Investigation on the Probe Design of a Ridge-loaded Slot Type for Near-Field Scanning Microwave Microscope

  • Son, Hyeok-Woo;Kim, Byung-Mun;Hong, Jae-Pyo;Cho, Young-Ki
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2120-2125
    • /
    • 2015
  • In this paper, a rectangular waveguide probe with a ridge-loaded straight slot (RLSS) is presented for a near-field scanning microwave microscope (NSMM). The RLSS is located laterally at the end wall of the cavity and is loaded on double ridges in a narrow straight slot to improve the spatial resolution compared with a straight slot. The probe consists of a rectangular cavity with an RLSS and a feed section of a WR-90 rectangular waveguide. When the proposed NSMM is located at distance of 0.1mm in front of a substrate without patches or strips, the simulated full width at half maximum (FWHM) of the probe improve by approximately 31.5 % compared with that of a straight slot without ridges. One dimensional scanning of the E-plane on a sample under test was conducted, and the reflection coefficient of the near-field scanning probe is presented.

Effect of Microstructure on the Machinability of Cast Iron (주철의 절삭성에 미치는 조직의 영향)

  • Park, Hee-Sang;Lee, Sang-Young;Kim, Jeong-Suk;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.21 no.6
    • /
    • pp.350-358
    • /
    • 2001
  • The machinability of cast iron is closely related to its microstructural property. In this study, the effect of graphite mophology and matrix microstructure on machinability in several commercial cast irons(GC 25, GCD 45, GCD 50, GCD 70, GCD HSMo, GCMP) was investigated. To estimate the machinability, turning test was carried out under conditions of spindle speed 80m/min, depth of cut 0.25mm, feed 0.16mm/rev and cutting distance 1 km. Thrust force in turning test decreases in the order of GCMP, GCD 70, GCD 50, GC 25, GCD 45 and GCD HSMo. i.e. machinability increases in this order. The superior machinability of GC 25 is caused by flake type graphite which acts as chip braker and provides lubrication during machining. Consequently, soft ferritic cast irons exhibit superior machinability compared with pearlitic cast irons.

  • PDF

A Study on the Fine Particle Dispensing Conditions for a Spiral Surface of Round Aluminum Bars (알루미늄 환봉의 나선형 표면 미세입자 분사가공의 조건에 대한 연구)

  • Choi, Sung-Yun;Lee, Eun-Ju;Lee, Sea-Han;Kwon, Dae-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.88-93
    • /
    • 2020
  • The goal of this study is to determine the influence of major factors on the spiral surface microparticle injection machining of cylindrical specimens by the statistical method ANOVA. Before the experiment, rod-shaped test specimens and jigs for helical surface spraying were prepared, and the surface roughness was measured with a surface roughness meter. The injection particle, nozzle diameter, and injection pressure were the primary parameters of the experiment. Other factors that were considered were injection height, injection time, revolutions, and feed distance. The surface roughness after machining was measured, and the effects of the surface roughness data on the primary factors were determined with ANOVA.

Numerical Analysis of Flow-Induced Noise by Vortex-Edge Interaction (Vortex-Edge의 상호작용에 기인한 유동소음의 전산해석)

  • KANG HO-KEUN;KIM EUN-RA
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.15-21
    • /
    • 2004
  • An edge tone is the discrete tone or narrow-band sound produced by an oscillating free shear layer, impinging on a rigid surface. In this paper, we present a 2-D edge tone to predict the frequency characteristics of the discrete oscillations of a jet-edge feedback cycle, using the finite difference lattice Boltzmann method (FDLBM). We use a modified version of the lattice BGK compressible fluid model, adding an additional term and allowing for longer time increments, compared to a conventional FDLBM, and also use a boundary fitted coordinates system. The jet is chosen long enough in order to guarantee the parabolic velocity profile of the jet at the outlet, and the edge consists of a wedge with an angle of ${\alpha}$ = 23. At a stand-off distance, the edge is inserted along the centerline of the jet, and a sinuous instability wave, with real frequency, is assumed to be created in the vicinity of the nozzle and propagates towards the downstream. We have succeeded in capturing very small pressure fluctuations, resulting from periodical oscillations of a jet around the edge. The pressure fluctuations propagate with the speed of sound. Its interaction with the wedge produces an non-rotational feedback field, which, near the nozzle exit, is a periodic transverse flow, producing the singularities at the nozzle lips.