• 제목/요약/키워드: Feed Drive Systems

검색결과 47건 처리시간 0.033초

고속 이송계의 통합설계 (Integrated Design of High-speed Feed Drive Systems)

  • 김민석;정성종
    • 대한기계학회논문집A
    • /
    • 제27권12호
    • /
    • pp.2028-2038
    • /
    • 2003
  • High-speed feed drive systems have been widely used in the manufacturing and semiconductor industries. Specifications for high-speed systems require more advanced capabilities than conventional feed drive systems. It is necessary to devise special design concepts to achieve the level of performance for high-speed feed drive systems. In this paper, an integrated design method is proposed for high-speed feed drive systems in which the interactions between mechanical and electrical subsystems ought to be considered simultaneously during the design process. Based on the integrated design method, a nonlinear optimal design procedure of mechanical subsystems considering the Abbe and radius errors is accomplished through the design process of electrical subsystems satisfying the control stability and the saturation condition of actuators as well as the relative stability. Both mechanical and electrical parameters are considered as design variables. Simulations and numerical case studies show that the integrated design method of high-speed feed drive systems creates results satisfying the desired performances of mechatronic systems.

Linear Motor 이송계의 진동 최소화를 위한 이송속도 최적화 (A Study on the Feed Rate Optimization of a Linear Motored Feed Drive System for Minimum Vibrations)

  • 최영휴;홍진현;최응영;김태형;최원선
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.321-325
    • /
    • 2004
  • Linear motor feed drive systems have been broadly used in machine tools or precision automatic feed systems. Recently, modem machine tools require high speed and high precision feed drive system to achieve high productivity. Unfortunately, a feed drive system, even though it was optimum designed, may experience severe transient vibrations during high-speed operation if its feed rate control is unsuitable. A rough feed rate curve having discontinuity in its acceleration profile causes a serious vibration problem in the feed slides system. This paper presents a feed rate optimization of a machine tool feed slide system, which is driven by a linear motor, for its minimum vibrations. Firstly, a 4-degree-of-freedom lumped parameter model is proposed for the vibration analysis of a linear motor driven machine tool feed drive system. Next, a feed rate optimization of the feed slide is carried out for minimum vibrations. The feed rate curve optimization strategy is to find out the most appropriate acceleration profile with jerk continuity. Of course, the optimized feed rate should approximate to the desired one as possible. A genetic algorithm with variable penalty function was used in this feed rate optimization.

  • PDF

볼스크류 이송계의 진동 최소화를 위한 이송속도 최적화 (A Study on the Feed Rate Optimization of a Ball Screw Feed Drive System for Minimum Vibrations)

  • 최영휴;홍진현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.962-966
    • /
    • 2004
  • Ball screw feed drive systems have been broadly used in machine tools or precision automatic feed systems. Recently, modern machine tools require high speed and high precision and drive system to achieve high productivity. Unfortunately, a feed drive system, even though it was optimum designed, may experience severe transient vibrations during high-speed operation if its feed rate control is unsuitable. A rough feed rate curve having discontinuity in its acceleration profile causes a serious vibration problem in the feed slide system. This paper presents a feed rate optimization of a machine tool feed slide system, which is driven by a ball screw, for its minimum vibrations. Firstly, a 6-degree-of-freedom lumped parameter model was proposed for the vibration analysis of a ball screw driven machine tool feed drive system. Next, a feed rate optimization of the feed slide was carried out for minimum vibrations. The feed rate curve optimization strategy is to find out the most appropriate acceleration profile having finite jerk. Of course, the optimized feed rate should approximate to the desired one as possible. A genetic algorithm with variable penalty function was used in this feed rate optimization.

  • PDF

특허분석을 통한 공작기계 이송계의 기술 현황과 발전방향 (The Technical Trend and Future Development Direction of Machine Tools Feed Drive System by Patent Mapping)

  • 은인웅;지현수;이지원
    • 한국정밀공학회지
    • /
    • 제29권5호
    • /
    • pp.510-515
    • /
    • 2012
  • Feed drive systems are used to position the machine tool components carrying the cutting tool and workpiece to the desired location. Hence, their positioning accuracy and speed determine the quality and productivity of machine tools. In this paper, technical trend of machine tools feed drive systems are analyzed by patent mapping. And this paper suggested future development direction of feed drive systems. The analysis is carried out by using problem solution map (PSM) for the applied patent during January 2000 and December 2009 in Korea, Japan, EU and U.S.A.

반경오차 보정을 위한 최적파라미터 튜닝 (Optimal Parameter Tuning to Compensate for Radius Errors)

  • 김민석
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.629-634
    • /
    • 2000
  • Generally, the accuracy of motion control systems is strongly influenced by both the mechanical characteristics and servo characteristics of feed drive systems. In the fed drive systems of machine tools that consist of mechanical parts and electrical parts, a torsional vibration is often generated because of its elastic elements in torque transmission. Especially, a torsional vibration caused by the elasticity of mechanical elements might deteriorate the quick movement of system and lead to shorten the life time of the mechanical transmission elements. So it is necessary to analyze the electromechanical system mathematically to optimize the dynamic characteristics of the feed drive system. In this paper, based on the simplifies feed drive system model, radius errors due to position gain mismatch and servo response characteristic have been developed and an optimal criterion for tuning the gain of speed controller is discussed. The proportional and integral parameter gain of the feed drive controller are optimal design variables for the gain tuning of PI speed controller. Through the optimization problem formulation, both proportional and integral parameter are optimally tuned so as to compensate the radius errors by using the genetic algorithm. As a result, higher performance on circular profile tests has been achieved than the one with standard parameters.

  • PDF

테이블 중량 감소 효과에 따른 스틱슬립 개선에 관한 연구 (A Study on Improvement of the Stick-slip Induced an Effect Decrease of the Table Weight)

  • 홍성오;조규재
    • 한국공작기계학회논문집
    • /
    • 제11권5호
    • /
    • pp.7-14
    • /
    • 2002
  • In order to achieve high precision machine tools, the research for performance enhancement of feed drive systems is required. Development of the high speed feed drive system has been a major issue for the past few decades in machine tool indestries. Because table levitation system decrease the table weight, an effect of reaction by weight is minimized and lost motion can be removed at maximum. In case fled system is designed with drive motor, ball screw and support bearing load capacity selection, an effect of decrease of the table weight exist. So, the table weight through an effect of decrease call it into the realization of cost down. Stick-slip friction has a great influence on the contouring accuracy of CNC machine tools. In this paper table levitation system has been developed for the stick-slip in a fled drive systems.

이송계에서 이송중량이 동적정도에 미치는 영향

  • 홍성오;김홍배;조규재
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.528-535
    • /
    • 2002
  • In order to achieve high precision machine tools, the research for performance enhancement of feed drive systems is required. Development of the high speed feed drive system has been a major issue for the past few decades in machine tool industries. The reduction of the tool change time as well as rapid travel time can enhance the productivity. However, the high speed feed drive system generates more heat in nature, which leads thermal expansion that has adverse effects on the accuracy of machined parts. Stick-slip friction has a great influence on the contouring accuracy of CNC machine tools. In this paper table levitation system has been developed for the stick-slip in a feed drive systems. And also, the driving position is set near the center of the main slideway. From the results, it is confirmed that yaw error and straightness can be improved.

  • PDF

High Lead Ball Screw를 사용한 고속이송계의 특성 (The Characteristics of High Speed Feed Drive System using High Lean Screw)

  • 고해주;박성호;정윤교
    • 한국공작기계학회논문집
    • /
    • 제10권4호
    • /
    • pp.97-103
    • /
    • 2001
  • The study on the high-speed machine tool is very important for the improvement of productivity since it can shortens cutting and non-cutting time. Especially, high speed of feed drive system is the major research field. In the industries of the advanced countries, the feed drive systems at the speed of 60 m/min have been already developed based on the high lead ball screws. In this study, a high speed feed drive system at the speed of 60 m/ min has been developed, and its movements characteris-tics are investigated. As the movement characteristics, positioning accuracy, angular accuracy, straightness and micro step-response are measured. Thermal characteristics of the system is also discussed. For measuring the movement characteris-tics, a laser interferometer, a memory-based Hi-coder and a cooling device are used. The experimental results confirm that the movement characteristics and the thermal behavior of the system are satisfactory in the aspect of accuracy and stability.

  • PDF

공작기계 시스템의 모델링과 동적특성 분석 (제2보) - 이송계의 모델링과 동적특성 분석 - (Modeling and Dynamic Analysis of Electro-mechanical System in Machine Tools(2$^{nd}$ Report) - Modeling and Dynamic Analysis of Feed Drive System -)

  • 박용환;신흥철;문희성;최종률
    • 한국정밀공학회지
    • /
    • 제16권2호통권95호
    • /
    • pp.218-224
    • /
    • 1999
  • In the feed drive systems of machine tools that consist of many mechanical components such as motor, coupling, ballscrew, nut or table, a torsional vibration is often generated because of its elastic elements in torque transmission. Generally, the accuracy of motion control system is strongly influenced by the dynamic behavior of coupled transmission components. Especially, a torsional vibration caused by the elasticity of mechanical elements might deteriorate the quick movement of system and lead to shorten the life time of the mechanical transmission elements. So, it is necessary to analyze the electromechanical system mathematically to optimize the dynamic characteristics of the feed system. In this paper, the mathematical model of a feed drive system was developed and its mechanical characteristics were analyzed on the basis of the proposed model. The design concepts of speed control loop to stabilize a feed drive system were also proposed.

  • PDF

A Study on the Feed Rate Optimization of a Ball Screw Driven Machine Tool Feed Slide for Minimum Vibrations

  • Choi, Yong-Hyu;Choi, Hoon-Ki;Kim, Soo-Tae;Choi, Eung-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1028-1032
    • /
    • 2004
  • In order to prevent machine tool feed slide system from transient vibrations during operations, machine tool designers usually adopt some typical design solutions; box-in-box typed feed slides, optimizing moving body for minimum weight and dynamic compliance, and so on. Despite all efforts for optimizing design, a feed drive system may experience severe transient vibrations during high-speed operation if its feed rate control is unsuitable. A rough feed rate curve having discontinuity in its acceleration profile causes a serious vibration problem in the feed slides system. This paper presents a feed rate optimization of a ball screw driven machine tool feed slide system for its minimum vibration. Firstly, a ball screw feed drive system was mathematically modeled as a 6-degree-of-freedom lumped parameter system. Next, a feed rate optimization of the system was carried out for minimum vibrations. The main idea of the feed rate optimization is to find out the most appropriate smooth acceleration profile with jerk continuity. A genetic algorithm was used in this feed rate optimization

  • PDF