• Title/Summary/Keyword: Federated Model

Search Result 63, Processing Time 0.028 seconds

AI Model Repository for Realizing IoT On-device AI (IoT 온디바이스 AI 실현을 위한 AI 모델 레포지토리)

  • Lee, Seokjun;Choe, Chungjae;Sung, Nakmyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.597-599
    • /
    • 2022
  • When IoT device performs on-device AI, the device is required to use various AI models selectively according to target service and surrounding environment. Also, AI model can be updated by additional training such as federated learning or adapting the improved technique. Hence, for successful on-device AI, IoT device should acquire various AI models selectively or update previous AI model to new one. In this paper, we propose AI model repository to tackle this issue. The repository supports AI model registration, searching, management, and deployment along with dashboard for practical usage. We implemented it using Node.js and Vue.js to verify it works well.

  • PDF

Clustering-Based Federated Learning for Enhancing Data Privacy in Internet of Vehicles

  • Zilong Jin;Jin Wang;Lejun Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1462-1477
    • /
    • 2024
  • With the evolving complexity of connected vehicle features, the volume and diversity of data generated during driving continue to escalate. Enabling data sharing among interconnected vehicles holds promise for improving users' driving experiences and alleviating traffic congestion. Yet, the unintentional disclosure of users' private information through data sharing poses a risk, potentially compromising the interests of vehicle users and, in certain cases, endangering driving safety. Federated learning (FL) is a newly emerged distributed machine learning paradigm, which is expected to play a prominent role for privacy-preserving learning in autonomous vehicles. While FL holds significant potential to enhance the architecture of the Internet of Vehicles (IoV), the dynamic mobility of vehicles poses a considerable challenge to integrating FL with vehicular networks. In this paper, a novel clustered FL framework is proposed which is efficient for reducing communication and protecting data privacy. By assessing the similarity among feature vectors, vehicles are categorized into distinct clusters. An optimal vehicle is elected as the cluster head, which enhances the efficiency of personalized data processing and model training while reducing communication overhead. Simultaneously, the Local Differential Privacy (LDP) mechanism is incorporated during local training to safeguard vehicle privacy. The simulation results obtained from the 20newsgroups dataset and the MNIST dataset validate the effectiveness of the proposed scheme, indicating that the proposed scheme can ensure data privacy effectively while reducing communication overhead.

FCBAFL: An Energy-Conserving Federated Learning Approach in Industrial Internet of Things

  • Bin Qiu;Duan Li;Xian Li;Hailin Xiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.9
    • /
    • pp.2764-2781
    • /
    • 2024
  • Federated learning (FL) has been proposed as an emerging distributed machine learning framework, which lowers the risk of privacy leakage by training models without uploading original data. Therefore, it has been widely utilized in the Industrial Internet of Things (IIoT). Despite this, FL still faces challenges including the non-independent identically distributed (Non-IID) data and heterogeneity of devices, which may cause difficulties in model convergence. To address these issues, a local surrogate function is initially constructed for each device to ensure a smooth decline in global loss. Subsequently, aiming to minimize the system energy consumption, an FL approach for joint CPU frequency control and bandwidth allocation, called FCBAFL is proposed. Specifically, the maximum delay of a single round is first treated as a uniform delay constraint, and a limited-memory Broyden-Fletcher-Goldfarb-Shanno bounded (L-BFGS-B) algorithm is employed to find the optimal bandwidth allocation with a fixed CPU frequency. Following that, the result is utilized to derive the optimal CPU frequency. Numerical simulation results show that the proposed FCBAFL algorithm exhibits more excellent convergence compared with baseline algorithm, and outperforms other schemes in declining the energy consumption.

Auto Regulated Data Provisioning Scheme with Adaptive Buffer Resilience Control on Federated Clouds

  • Kim, Byungsang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5271-5289
    • /
    • 2016
  • On large-scale data analysis platforms deployed on cloud infrastructures over the Internet, the instability of the data transfer time and the dynamics of the processing rate require a more sophisticated data distribution scheme which maximizes parallel efficiency by achieving the balanced load among participated computing elements and by eliminating the idle time of each computing element. In particular, under the constraints that have the real-time and limited data buffer (in-memory storage) are given, it needs more controllable mechanism to prevent both the overflow and the underflow of the finite buffer. In this paper, we propose an auto regulated data provisioning model based on receiver-driven data pull model. On this model, we provide a synchronized data replenishment mechanism that implicitly avoids the data buffer overflow as well as explicitly regulates the data buffer underflow by adequately adjusting the buffer resilience. To estimate the optimal size of buffer resilience, we exploits an adaptive buffer resilience control scheme that minimizes both data buffer space and idle time of the processing elements based on directly measured sample path analysis. The simulation results show that the proposed scheme provides allowable approximation compared to the numerical results. Also, it is suitably efficient to apply for such a dynamic environment that cannot postulate the stochastic characteristic for the data transfer time, the data processing rate, or even an environment where the fluctuation of the both is presented.

Geometric Optimization Algorithm for Path Loss Model of Riparian Zone IoT Networks Based on Federated Learning Framework

  • Yu Geng;Tiecheng Song;Qiang Wang;Xiaoqin Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.1774-1794
    • /
    • 2024
  • In the field of environmental sensing, it is necessary to develop radio planning techniques for the next generation Internet of Things (IoT) networks over mixed terrains. Such techniques are needed for smart remote monitoring of utility supplies, with links situated close to but out of range of cellular networks. In this paper, a three-dimension (3-D) geometric optimization algorithm is proposed, considering the positions of edge IoT devices and antenna coupling factors. Firstly, a multi-level single linkage (MLSL) iteration method, based on geometric objectives, is derived to evaluate the data rates over ISM 915 MHz channels, utilizing optimized power-distance profiles of continuous waves. Subsequently, a federated learning (FL) data selection algorithm is designed based on the 3-D geometric positions. Finally, a measurement example is taken in a meadow biome of the Mexican Colima district, which is prone to fluvial floods. The empirical path loss model has been enhanced, demonstrating the accuracy of the proposed optimization algorithm as well as the possibility of further prediction work.

Study on Evaluation Method of Task-Specific Adaptive Differential Privacy Mechanism in Federated Learning Environment (연합 학습 환경에서의 Task-Specific Adaptive Differential Privacy 메커니즘 평가 방안 연구)

  • Assem Utaliyeva;Yoon-Ho Choi
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.1
    • /
    • pp.143-156
    • /
    • 2024
  • Federated Learning (FL) has emerged as a potent methodology for decentralized model training across multiple collaborators, eliminating the need for data sharing. Although FL is lauded for its capacity to preserve data privacy, it is not impervious to various types of privacy attacks. Differential Privacy (DP), recognized as the golden standard in privacy-preservation techniques, is widely employed to counteract these vulnerabilities. This paper makes a specific contribution by applying an existing, task-specific adaptive DP mechanism to the FL environment. Our comprehensive analysis evaluates the impact of this mechanism on the performance of a shared global model, with particular attention to varying data distribution and partitioning schemes. This study deepens the understanding of the complex interplay between privacy and utility in FL, providing a validated methodology for securing data without compromising performance.

For continuous model optimization Federated learning efficiency strategy (지속적인 모델 최적화를 위한 연합 학습 효율화 전략)

  • Youngsu Kim;Heonchang Yu
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.780-783
    • /
    • 2024
  • 본 논문에서는 지속적으로 최적화된 인공지능 모델을 적용하기 위한 방안으로 연합 학습(Federated Learning)을 활용한 접근법을 제시한다. 최근 다양한 산업 분야에서 인공지능 활용에 대한 필요성이 증가하고 있다. 금융과 같은 일부 산업은 강력한 보안, 높은 정확도, 규제 준수, 실시간 대응이 요구됨과 동시에 정적 시스템 환경 특성으로 적용된 인공지능 모델의 최적화가 어렵다. 이러한 환경적 한계 해결을 위하여, 연합 학습을 통한 모델의 최적화 방안을 제안한다. 연합 학습은 데이터 프라이버시를 유지하면서 모델의 지속적 최적화를 제공이 가능한 강력한 아키텍처이다. 그러나 연합 학습은 클라이언트와 중앙 서버의 반복적인 통신과 학습으로, 불필요한 자원에 대한 소요가 요구된다. 이러한 연합 학습의 단점 극복을 위하여, 주요도 높은 클라이언트의 선정 및 클라이언트와 중앙 서버의 조기 중단(early stopping) 전략을 통한 지속적, 효율적 최적화가 가능한 연합 학습 모델의 운영 전략을 제시한다.

A many-objective evolutionary algorithm based on integrated strategy for skin cancer detection

  • Lan, Yang;Xie, Lijie;Cai, Xingjuan;Wang, Lifang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.80-96
    • /
    • 2022
  • Nowadays, artificial intelligence promotes the rapid development of skin cancer detection technology, and the federated skin cancer detection model (FSDM) and dual generative adversarial network model (DGANM) solves the fragmentation and privacy of data to a certain extent. To overcome the problem that the many-objective evolutionary algorithm (MaOEA) cannot guarantee the convergence and diversity of the population when solving the above models, a many-objective evolutionary algorithm based on integrated strategy (MaOEA-IS) is proposed. First, the idea of federated learning is introduced into population mutation, the new parents are generated through sub-populations employs different mating selection operators. Then, the distance between each solution to the ideal point (SID) and the Achievement Scalarizing Function (ASF) value of each solution are considered comprehensively for environment selection, meanwhile, the elimination mechanism is used to carry out the select offspring operation. Eventually, the FSDM and DGANM are solved through MaOEA-IS. The experimental results show that the MaOEA-IS has better convergence and diversity, and it has superior performance in solving the FSDM and DGANM. The proposed MaOEA-IS provides more reasonable solutions scheme for many scholars of skin cancer detection and promotes the progress of intelligent medicine.

Federated Learning-Internet of Underwater Things (연합 학습기반 수중 사물 인터넷)

  • Shrutika Sinha;G., Pradeep Reddy;Soo-Hyun Park
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.140-142
    • /
    • 2023
  • Federated learning (FL) is a new paradigm in machine learning (ML) that enables multiple devices to collaboratively train a shared ML model without sharing their local data. FL is well-suited for applications where data is sensitive or difficult to transmit in large volumes, or where collaborative learning is required. The Internet of Underwater Things (IoUT) is a network of underwater devices that collect and exchange data. This data can be used for a variety of applications, such as monitoring water quality, detecting marine life, and tracking underwater vehicles. However, the harsh underwater environment makes it difficult to collect and transmit data in large volumes. FL can address these challenges by enabling devices to train a shared ML model without having to transmit their data to a central server. This can help to protect the privacy of the data and improve the efficiency of training. In this view, this paper provides a brief overview of Fed-IoUT, highlighting its various applications, challenges, and opportunities.

Federated Deep Reinforcement Learning Based on Privacy Preserving for Industrial Internet of Things (산업용 사물 인터넷을 위한 프라이버시 보존 연합학습 기반 심층 강화학습 모델)

  • Chae-Rim Han;Sun-Jin Lee;Il-Gu Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.1055-1065
    • /
    • 2023
  • Recently, various studies using deep reinforcement learning (deep RL) technology have been conducted to solve complex problems using big data collected at industrial internet of things. Deep RL uses reinforcement learning"s trial-and-error algorithms and cumulative compensation functions to generate and learn its own data and quickly explore neural network structures and parameter decisions. However, studies so far have shown that the larger the size of the learning data is, the higher are the memory usage and search time, and the lower is the accuracy. In this study, model-agnostic learning for efficient federated deep RL was utilized to solve privacy invasion by increasing robustness as 55.9% and achieve 97.8% accuracy, an improvement of 5.5% compared with the comparative optimization-based meta learning models, and to reduce the delay time by 28.9% on average.