• Title/Summary/Keyword: Fecal metabolites

Search Result 53, Processing Time 0.026 seconds

The Association between Gut Microbiota and Its Metabolites in Gestational Diabetes Mellitus

  • Hua Lin;Changxi Liao;Rujing Zhang
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.10
    • /
    • pp.1995-2004
    • /
    • 2024
  • Gut microbial metabolites have been demonstrated to play a role in diabetes mellitus and gestational diabetes mellitus (GDM). This study aimed to investigate gut microbiome, fecal metabolomics, and their association in pregnant women with and without GDM. The metabolome indicated that the top 2 differential metabolic pathways between control (Con) and GDM groups were phenylalanine metabolism and nucleotide metabolism. The increased Phenylalanylglycine, m-coumaric acid, and Phenylacetic acid were among the top differential metabolites between Con and GDM groups and involved in phenylalanine metabolism. Uracil and hypoxanthine were top differential metabolites in Con vs. GDM and involved in nucleotide metabolism. The proficiently altered gut microbiota at the class level was c_unclassified_ Firmicutes. Association analysis between gut microbiota and fecal metabolites indicated that the increased gut symbiont Clostridium belonged to Firmicutes and was linked to the dysregulation of phenylalanine metabolism in GDM. This study may provide the mechanism underlying how Clostridium-phenylalanine metabolism association contributes to GDM pathogenesis and also be a novel therapeutic strategy to treat GDM.

유산균 투여가 건강한 성인의 분변미생물 및 부패산물 생성에 미치는 영향

  • Shin, Myeong-Su;Kim, Yong-Jae;Bae, Hyoung-Suk;Baek, Young-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.2
    • /
    • pp.254-260
    • /
    • 1996
  • To investigate the effects of lactic acid bacteria administration on fecal microflora and putrefactive metabolites in human being, Lactobacillus acidophilus and Bifidobacterium longum powder (1.5 $\times$ 10$^{9}$ cells, respectively) was administrated to six healthy volunteers (average 28 years old) twice a day for 2 weeks. During the administration of lactic acid bacteria, the numbers of bifidobacteria, lactobacilli, and enterococci in feces were increased significantly, whereas those of Staphylococcus and lecithinase-negative Clostridium were decreased considerably. In addition, a number of anaerobic Bacteroides were increased. However, the contents of fecal ammonia and putrefactive metabolites (indole, skatole, p-cresole) were not changed during the administration.

  • PDF

A Study on Diagnosis of the Fertility of one Aged Female Gorilla by using the Fecal Sex Hormone Metabolites

  • Jung, So-Young;Lim, Yang-Mook;Eo, Kyung-Yeon
    • Journal of Veterinary Clinics
    • /
    • v.33 no.2
    • /
    • pp.138-141
    • /
    • 2016
  • The aim of this study was to diagnose the fertility of a female western lowland gorilla kept in Seoul Zoo, in accordance with age by analyzing the fecal sex hormone metabolites. The study was conducted in two period of times, when the animal was from 35 to 37 years old and when the animal was from 40 to 42 years old. Non-invasive method by using fecal samples was used for safe and efficient fertility diagnosis. We collected the feces from the enclosure at least three times a week. Then $17{\beta}$-estradiol and progesterone, which are fecal sex hormone metabolites, were measured by time-resolved fluoro-immunoassay to compare the menstruation cycle and the annual reproductive cycle. For the duration of the primary study (when the animal was 35~37 years old), irregular menstruation and high concentrations of estradiol and progesterone were observed. However, menstruation was hardly observed and the concentrations of both hormones were statistically very low in the period of secondary study (when the animal was 40~42 years old). This observed phenomenon in our study was very comparable to menopause in adult women; therefore, it was confirmed that our female gorilla has reached menopause because of the natural aging, as they become older.

Identification of Metabolites of Phytosterols in Rat Feces Using GC/MS

  • Song, Yun-Seon;Jin, Chang-bae;Park, Eun-Hee
    • Archives of Pharmacal Research
    • /
    • v.23 no.6
    • /
    • pp.599-604
    • /
    • 2000
  • $\beta$-Sitosterol, campesterol and stigmasterol have been known to the phytosterols the most frequently found in plants. Metabolism of phytosterols was investigated using rat feces and liver microsomes. Feces were collected after phytosterols (a well characterized mixture of $\beta$-sitosterol 40%, campesterol 30% and dihydrobrasicasterol) were administered orally (0.5 ${g/kg$) to rats. Metabolites of phytosterols were identified using GC/MS. Three peaks were eluted at 12.47, 12.65, 12.87 min and had characteristic molecular ions m/z 428, 430, 432, respectively. Three fecal metabolites were identified as androstadienedione, androstenedione, and androstanedione. No metabolites could be detected in the rat liver microsomal reaction mixture. The results suggest that the metabolites of phytosterols in rat feces are formed by oxidation at 3- position, saturation at 5- and 6- position, and 17- side chain cleavage in the rat large intestine.

  • PDF

Protective Effects of Lacticaseibacillus rhamnosus IDCC3201 on Motor Functions and Anxiety Levels in a Chronic Stress Mouse Model

  • Jae Gwang Song;Daye Mun;Bomi Lee;Minho Song;Sangnam Oh;Jun-Mo Kim;Jungwoo Yang;Younghoon Kim;Hyung Wook Kim
    • Food Science of Animal Resources
    • /
    • v.43 no.6
    • /
    • pp.1044-1054
    • /
    • 2023
  • Growing evidence indicates a crucial role of the gut microbiota in physiological functions. Gut-brain axis imbalance has also been associated with neuropsychiatric and neurodegenerative disorders. Studies have suggested that probiotics regulate the stress response and alleviate mood-related symptoms. In this study, we investigated the effects of the probiotic Lacticaseibacillus rhamnosus IDCC3201 (L3201) on the behavioral response and fecal metabolite content in an unpredictable chronic mild stress (UCMS) mouse model. Our study shows that chronic stress in mice for three weeks resulted in significant changes in behavior, including lower locomotor activity, higher levels of anxiety, and depressive-like symptoms, compared to the control group. Metabolomic analysis demonstrated that disrupted fecal metabolites associated with aminoacyl-tRNA biosynthesis and valine, leucine, and isoleucine biosynthesis by UCMS were restored with the administration of L3201. Oral administration of the L3201 ameliorated the observed changes and improved the behavioral alterations along with fecal metabolites, suggesting that probiotics play a neuroprotective role.

Rapid Analysis of Major Putrefactive Metabolites by GC and GC/MSD (GC 및 GC/MSD를 이용한 주요 분변 부패산물 신속분석법)

  • 박규용;김민철;우강융;이나경;백현동
    • KSBB Journal
    • /
    • v.18 no.1
    • /
    • pp.74-77
    • /
    • 2003
  • A simple, reproducible, and rapid gas chromatographic method for putrefactive metabolite determination in feces was developed. The method involves the direct injection of fecal supernatants into the gas chromatograph, without pretreatment. The mass spectra of these metabolites were obtained using an HP 5971 mass selective detector operated in electron impact (EI) ionization mode. This method produced sharp peaks and allowed the simultaneous determination of fecal putrefactive metabolites.

Effects of Bacillus polyfermenticus SCD Administration on Fecal Microflora and Putrefactive Metabolites in Healthy Adults

  • Park, Kyu-Yong;Jung, Hwang-Yeong;Woo, Kang-Lyung;Jun, Kyoung-Dong;Kang, Jae-Seon;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.657-663
    • /
    • 2002
  • Probiotics have been suggested to improve gastrointestinal health in humans. To investigate the effects of Bacillus polyfermenticus SCD administration on fecal microflora and putrefactive metabolites in humans, Bacillus polyfermenticus SCD (4.00${\times}$10$\sub$5/ CFU/mg) was administrated to ten healthy subjects (5 men and 5 women, average age 24 years) three times a day for 2 weeks. Fecal samples were collected before (1st and 2nd weeks, control), during (3rd and 4th weeks), and 2 weeks after the administration. The fo11owing microbial groups were evaluated in the feces: aerobic and anaerobic bacteria, Bacillus polyfermenticus SCD, Lactobacillus, Bifidobacterium, total lactic acid bacteria, Salmonella, Clostridium, Clostridium perfringens, Eubacterium, Staphylococcus, Coliform bacteria, Pseudomunas, and Yeast. Fecal concentrations of total aerobic bacteria (p<0.05, p<0.01, 3rd and 4th weeks), total lactic acid bacteria (p<0.01, 3rd, 4th and 5th weeks), and Bifidobacteria (p<0.05, 4th and 5th weeks) were significantly increased in all subjects, compared to the control, from the 3rd week after the administration of the products. Clostridium (p<0.01, 4th week), Clostridium perfringens (p<0.05, p<0.01, 3rd and 4th weeks), and coliform (p<0.01,5th week) were significantly reduced from the 3rd week of administration. No significant changes in the fecal concentrations of Pseudomonas, Lactobacillus, Eubacterium, Staphylococcus, yeast, and total anaerobes were observed. Six weeks after the administration, the concentration of all rnicroorganlsrns returned to the basal level. Bacillus polyfermenticus SCD was significantly maintained from the 3rd week to 6th week of the study. Despite the absence of a statistical significance, the putrefactive metabolites (ammonia, indole, skatole, and $\rho$-cresol) and the pH value tended to be lower during and after the test periods than the base line. These results show that this probiotic preparation is able to colonize the intestine, and suggest that it may be useful as a beneficial probiotic in humans.

Nervonic Acid Inhibits Replicative Senescence of Human Wharton's Jelly-Derived Mesenchymal Stem Cells

  • Sun Jeong Kim;Soojin Kwon;Soobeen Chung;Eun Joo Lee;Sang Eon Park;Suk-Joo Choi;Soo-Young Oh;Gyu Ha Ryu;Hong Bae Jeon;Jong Wook Chang
    • International Journal of Stem Cells
    • /
    • v.17 no.1
    • /
    • pp.80-90
    • /
    • 2024
  • Cellular senescence causes cell cycle arrest and promotes permanent cessation of proliferation. Since the senescence of mesenchymal stem cells (MSCs) reduces proliferation and multipotency and increases immunogenicity, aged MSCs are not suitable for cell therapy. Therefore, it is important to inhibit cellular senescence in MSCs. It has recently been reported that metabolites can control aging diseases. Therefore, we aimed to identify novel metabolites that regulate the replicative senescence in MSCs. Using a fecal metabolites library, we identified nervonic acid (NA) as a candidate metabolite for replicative senescence regulation. In replicative senescent MSCs, NA reduced senescence-associated 𝛽-galactosidase positive cells, the expression of senescence-related genes, as well as increased stemness and adipogenesis. Moreover, in non-senescent MSCs, NA treatment delayed senescence caused by sequential subculture and promoted proliferation. We confirmed, for the first time, that NA delayed and inhibited cellular senescence. Considering optimal concentration, duration, and timing of drug treatment, NA is a novel potential metabolite that can be used in the development of technologies that regulate cellular senescence.

Development of Fecal Microbial Enzyme Mix for Mutagenicity Assay of Natural Products

  • Yeo, Hee-Kyung;Hyun, Yang-Jin;Jang, Se-Eun;Han, Myung-Joo;Lee, Yong-Sup;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.838-848
    • /
    • 2012
  • Orally administered herbal glycosides are metabolized to their hydrophobic compounds by intestinal microflora in the intestine of animals and human, not liver enzymes, and absorbed from the intestine to the blood. Of these metabolites, some, such as quercetin and kaempherol, are mutagenic. The fecal bacterial enzyme fraction (fecalase) of human or animals has been used for measuring the mutagenicity of dietary glycosides. However, the fecalase activity between individuals is significantly different and its preparation is laborious and odious. Therefore, we developed a fecal microbial enzyme mix (FM) usable in the Ames test to remediate the fluctuated reaction system activating natural glycosides to mutagens. We selected, cultured, and mixed 4 bacteria highly producing glycosidase activities based on a cell-free extract of feces (fecalase) from 100 healthy Korean volunteers. When the mutagenicities of rutin and methanol extract of the flos of Sophora japonica L. (SFME), of which the major constituent is rutin, towards Salmonella typhimurium strains TA 98, 100, 102, 1,535, and 1,537 were tested using FM and/or S9 mix, these agents were potently mutagenic. These mutagenicities using FM were not significantly different compared with those using Korean fecalase. SFME and rutin were potently mutagenic in the test when these were treated with fecalase or FM in the presence of S9 mix, followed by those treated with S9 mix alone and those with fecalase or FM. Freeze-dried FM was more stable in storage than fecalase. Based on these findings, FM could be usable instead of human fecalase in the Ames test.