References
- Akao, T., H. Kida, M. Kanaoka, M. Hattori, and K. Kobashi. 1988. Intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rb1 from Panax ginseng. J. Pharm. Pharmacol. 50: 1155-1160.
- Akao, T., M. Kanaoka, and K. Kobashi. 1988. Appearance of compound K, a major metabolite of ginsenoside Rb1 by intestinal bacteria, in rat plasma after oral administration - measurement of compound K by enzyme immunoassay. Biol. Pharm. Bull. 21: 245-249.
- Ames, B. N., J. McCann, and E. Tamasaki. 1975. Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat. Res. 31: 347-364. https://doi.org/10.1016/0165-1161(75)90046-1
- Ames, B. N. 1979. Identifying environmental chemicals causing mutations and cancer. Science 204: 587-593. https://doi.org/10.1126/science.373122
- Bae, E. A., M. K. Choo, E. K. Park, S. Y. Park, H. Y. Shin, and D. H. Kim. 2002. Metabolism of ginsenoside R(c) by human intestinal bacteria and its related antiallergic activity. Biol. Pharm. Bull. 25: 743-747. https://doi.org/10.1248/bpb.25.743
- Boyle, S. P., V. L. Dobson, S. J. Duthie, D. C. Hinselwood, J. A. Kyle, and A. R. Collins. 2000. Bioavailability and efficiency of rutin as an antioxidant: A human supplementation study. Eur. J. Clin. Nutr. 54: 774-782. https://doi.org/10.1038/sj.ejcn.1601090
- Brown, J. P. and P. S. Dietrich. 1979. Mutagenicity of plant flavonols in the Salmonella/mammalian microsome test: Activation of flavonol glycosides by mixed glycosidases from rat cecal bacteria and other sources. Mutat. Res. 66: 223-240. https://doi.org/10.1016/0165-1218(79)90083-1
- Choi, J. R., S. W. Hong, Y. Kim, S. E. Jang, N. J. Kim, and D. H. Kim. 2011. Metabolic activities of ginseng and its constituents, ginsenoside Rb1 and Rg1, by human intestinal microflora. J. Ginseng Res. 35: 301-307. https://doi.org/10.5142/jgr.2011.35.3.301
- Choo, M. K., E. K. Park, M. J. Han, and D. J. Kim. 2003. Ginsenoside Rh1 possesses antiallergic and anti-inflammatory activities. Planta Med. 69: 518-522. https://doi.org/10.1055/s-2003-40653
- Dunnick, J. K. and J. R. Hailey. 1992. Toxicity and carcinogenicity studies of quercetin, a natural component of foods. Fundam. Appl. Toxicol. 19: 423-431. https://doi.org/10.1016/0272-0590(92)90181-G
- Ikeda, N., Y. Saito, J. Shimazu, A. Ochi, J. Mizutani, and J. Watanabe. 1994. Variations in concentrations of bacterial metabolites, enzyme activities, moisture, pH and bacterial composition between and within individuals in faeces of seven healthy adults. J. Appl. Bacteriol. 77: 185-194. https://doi.org/10.1111/j.1365-2672.1994.tb03063.x
- Kim, D. H., E. A. Jung, I. S. Sohng, J. A. Han, T. H. Kim, and M. J. Han. 1998. Intestinal bacterial metabolism of flavonoids and its relation to some biological activities. Arch. Pharm. Res. 21: 17-23. https://doi.org/10.1007/BF03216747
- Kim, D. H. 2002. Intestinal microflora activate the pharmacological effects of herbal medicines. Nat. Prod. Sci. 8: 35-43.
- Kobashi, K. and T. Akao. 1997. Relation of intestinal bacteria to pharmacological effect of glycosides. Biosci Microflora 16: 1-7.
- Kobashi, K., H. Nakata, H. Takebe, and K. Terasawa. 1984. Relation of intestinal microflora to Syo. Wakan-iyaku-kaishi 1: 166-167.
- Laqueur, G. L. 1964. Carcinogenic effects of cycad meal and cycasin, methylazoxymethanol glycoside, in rats and effects of cycasin in germ-free rats. Fed. Proc. 23: 1386-1388.
- Lee, D. S., Y. S. Kim, C. N. Ko, K. H. Cho, H. S. Bae, K. S. Lee, et al. 2002. Fecal metabolic activities of herbal components to bioactive compounds. Arch. Pharm. Res. 25: 165-169. https://doi.org/10.1007/BF02976558
- Lee, J., E. Lee, D. Kim, J. Lee, J. Yoo, and B. Koh. 2009. Studies on absorption, distribution and metabolism of ginseng in humans after oral administration. J. Ethnopharmacol. 122: 143-148. https://doi.org/10.1016/j.jep.2008.12.012
- MacGregor, J. T. and L. Jurd. 1978. Mutagenicity of plant flavonoids: Structural requirements for mutagenic activity in Salmonella Typhimurium. Mutat. Res. 54: 297-309. https://doi.org/10.1016/0165-1161(78)90020-1
- Mallet, A. K., I. R. Rowland, C. A. Bearne, J. C. Flynn, B. T. Fehilly, Y. S. Udeen, and M. J. G. Farthing. 1988. Effect of dietary supplements of apple pectin, wheat bran or fat on the enzyme activity of the human fecal flora. Microb. Ecol. Health Dis. 1: 23-39. https://doi.org/10.3109/08910608809140175
- Matsumoto, H. 1980. In E. C. Miller, J. A. Miller, I. Hirono, T. Sugimura, and S. Takayama (eds.). Naturally Occurring Carcinogens-mutagens and Modulators of Carcinogenesis, pp. 67-77. Univ. Park Press, Baltimore, MD.
- Mykkanen, H., K. Laiho, and S. Salminen. 1998. Variations in fecal bacterial enzyme activities and associations with bowel function and diet in elderly subjects. J. Appl. Microbiol. 85: 37-41. https://doi.org/10.1046/j.1365-2672.1998.00454.x
- Nagao, M., Y. Takahashi, H. Yamanaka, and T. Sugimura. 1979. Mutagens in coffee and tea. Mutat. Res. 68: 101-106. https://doi.org/10.1016/0165-1218(79)90137-X
- Reddy, B. S., D. Hanson, S. Manar, L. Mathews, M. Sbaschnig, C. Sharma, and B. Simi. 1980. Effect of high fat, high-beef diet and of mode of cooking of beef in the diet on fecal bacterial enzymes and fecal bile acids and neutral sterols. J. Nutr. 110: 1880-1887.
- Tamura, G., C. Gold, A. Feerro-Luzzi, and B. Ames. 1980. Fecalase: A model for activation of dietary glycosides to mutagens by intestinal flora. Proc. Natl. Acad. Sci. USA. 77: 4961-4965. https://doi.org/10.1073/pnas.77.8.4961
- Trinh, H. T., E. H. Joh, H. Y. Kwak, N. J. Baek, and D. H. Kim. 2010. Anti-pruritic effect of baicalin and its metabolites, baicalein and oroxylin A, in mice. Acta Pharmacol. Sin. 31: 718-724. https://doi.org/10.1038/aps.2010.42
- Wakabayashi, C., H. Hasegawa, J. Murata, and I. Saiki. 1998. An intestinal bacterial metabolite of ginseng protopanaxadiol saponins has the ability to induce apoptosis in tumor cells. Oncol. Res. 9: 411-417.
- Yim, J. S., Y. S. Kim, S. K. Moon, K. H. Cho, H. S. Bae, J. J. Kim, et al. 2004. Metabolic activities of ginsenoside Rb1, baicalin, glycyrrhizin and geniposide to their bioactive compounds by human intestinal microflora. Biol. Pharm. Bull. 27: 1580-1583. https://doi.org/10.1248/bpb.27.1580
Cited by
- Role of intestinal microflora in xenobiotic‐induced toxicity vol.57, pp.1, 2012, https://doi.org/10.1002/mnfr.201200461
- The effect of gut microbiota on drug metabolism vol.9, pp.10, 2012, https://doi.org/10.1517/17425255.2013.807798
- Doenjang, a Fermented Korean Soybean Paste, Inhibits Lipopolysaccharide Production of Gut Microbiota in Mice vol.17, pp.1, 2014, https://doi.org/10.1089/jmf.2013.3073
- A New Approach to Produce Resveratrol by Enzymatic Bioconversion vol.26, pp.8, 2016, https://doi.org/10.4014/jmb.1512.12084
- How to Determine the Role of the Microbiome in Drug Disposition vol.46, pp.11, 2012, https://doi.org/10.1124/dmd.118.083402
- Gut Reactions: Breaking Down Xenobiotic–Microbiome Interactions vol.71, pp.2, 2019, https://doi.org/10.1124/pr.118.015768
- Ophiopogon Polysaccharide Promotes the In Vitro Metabolism of Ophiopogonins by Human Gut Microbiota vol.24, pp.16, 2012, https://doi.org/10.3390/molecules24162886
- Glucuronides Hydrolysis by Intestinal Microbial β-Glucuronidases (GUS) Is Affected by Sampling, Enzyme Preparation, Buffer pH, and Species vol.13, pp.7, 2021, https://doi.org/10.3390/pharmaceutics13071043