DOI QR코드

DOI QR Code

Oxidative Potential of Some Endophytic Fungi Using 1-Indanone as Substrate

  • Received : 2011.12.07
  • Accepted : 2012.01.21
  • Published : 2012.06.28

Abstract

The oxidative potential of the fungus Penicillium brasilianum, a strain isolated as endophytic from a Meliaceae plant (Melia azedarach), was investigated using 1-indanone as substrate to track the production of monooxygenases. The fungus produced the dihydrocoumarin from 1-indanone with the classical Baeyer-Villiger reaction regiochemistry, and (-)-(R)-3-hydroxy-1-indanone with 78% ee. Minor compounds that had resulted from lipase and SAM activities were also detected. The biotransformation procedures were also applied using a collection of Penicillium and Aspergillus fungi obtained from M. azedarach and Murraya paniculata. The results showed that Baeyer-Villiger were mostly active in fungi isolated from M. azedarach. Almost all fungi tested produced 3-hydroxy-1-indanone.

Keywords

References

  1. Alphand, V., G. Carrea, R. Wohlgemuth, R. Furstoss, and J. M. Woodley. 2003. Towards large-scale synthetic applications of Baeyer-Villiger monooxygenases. Trends Biotechnol. 21: 318-323. https://doi.org/10.1016/S0167-7799(03)00144-6
  2. Baldwin, C. V. F. 2008. The first 200-L scale asymmetric baeyer-villiger oxidation using a whole-cell biocatalyst. Org. Proc. Res. Develop. 12: 660-665. https://doi.org/10.1021/op800046t
  3. Fill, T. P. and E. Rodrigues-Fo. 2007. Four additional meroterpenes produced by penicillium sp found in association with melia azedarach. possible biosynthetic intermediates to Austin. Z. Naturforsch. 62b: 1035-1044.
  4. Hassall, C. H. 1957. The Baeyer-Villiger Oxidation of Aldehydes and Ketones, Organic Reactions Vol. 9, John Wiley & Sons, Inc., New York.
  5. Jiyeoun, P., D. Kim, S. Kim, J. Kim, K. Bae, and C. Lee. 2007. The analysis and application of a recombinant monooxygenase library as a biocatalyst for the baeyer-villiger reaction. J. Microbiol. Biotechnol. 17: 1083-1089.
  6. Joly, S. and M. S. Nair. 2001. Efficient enzymatic kinetic resolution of 4-hydroxytetralone and 3-hydroxyindanone. Tetrahedron Asymmetry 12: 2283-2287. https://doi.org/10.1016/S0957-4166(01)00404-9
  7. Kusari, S., M. Lamshoft, S. Zuhlke, and M. Spiteller. 2008. An endophytic fungus from Hypericum perforatum that produces hypericin. J. Nat. Prod. 71: 159-162. https://doi.org/10.1021/np070669k
  8. Leisch, H., K. Morley, and P. C. K. Lau. 2011. Baeyer-villiger monooxygenases: More than just green chemistry. Chem. Rev. 111: 4165-4222. https://doi.org/10.1021/cr1003437
  9. Mihovilovic, M. D., B. Muller, and P. Stanetty. 2002. Monooxygenase-mediated baeyer-villiger oxidations. Eur. J. Org. Chem. 3711-3730.
  10. Mihovilovic, M. D. 2006. Enzyme Mediated Baeyer-Villiger Oxidations. Curr. Org. Chem. 10: 1265-1287. https://doi.org/10.2174/138527206777698002
  11. Mlochowski, J., W. P. Czoch, M. P. Ottlik, and H. W. M. Lochowska. 2011. Non-metal and enzymatic catalysts for hydroperoxide oxidation of organic compounds. Open Catal. J. 4: 54-82. https://doi.org/10.2174/1876214X01104010054
  12. Murahashi, S. I., S. Noji, T. Hirabayashia, and N. Komiya. 2005. Manganese-catalyzed enantioselective oxidation of C-H bonds of alkanes and silyl ethers to optically active ketones. Tetrahedron Asymmetry 16: 3527-3535. https://doi.org/10.1016/j.tetasy.2005.08.056
  13. Pastre, R., A. M. R. Marinho, E. Rodrigues-Fo, A. Q. L. Souza, and J. O. Pereira. 2007. Diversidade de policetideos produzidos por especies de Penicillium isoladas de Melia azedarach e Murraya paniculata. Quim. Nova 30: 1867-1871. https://doi.org/10.1590/S0100-40422007000800013
  14. Podgorseka, A., S. Stavbera, M. Zupanb, and J. Iskra. 2006. Visible light induced 'on water' benzylic bromination with N-bromosuccinimide. Tetrahedron Lett. 47: 1097-1099. https://doi.org/10.1016/j.tetlet.2005.12.040
  15. Resnick, S. M., D. S. Torok, K. Lee, J. M. Brand, and G. T. Gibson. 1994. Regiospecific and stereoselective hydroxylation of 1-indanone and 2-indanone by naphthalene dioxygenase and toluene dioxygenas. Appl. Environ. Microbiol. 60: 3323-3328.
  16. Santos, R. M. G. and E. Rodrigues-Fo. 2002. Meroterpenes from penicillium sp found in association with Melia azedarach. Phytochemistry 61: 907-912. https://doi.org/10.1016/S0031-9422(02)00379-5
  17. Santos, R. M. G., E. Rodrigues-Fo, W. C. Rocha, and M. F. S. Teixeira. 2003. Endophytic fungi from Melia azedarach. World J. Microbiol. Biotechnol. 19: 767-770. https://doi.org/10.1023/A:1026000731189
  18. Stierle, A. and G. A. Strobel. 1995. The search for a taxol-producing microorganisms among endophytic fungi of the pacific Yew, Taxus brevifolia. J. Nat. Prod. 58: 1315-1324. https://doi.org/10.1021/np50123a002
  19. Tan, Q. G. and X. D. Luo. 2011. Meliaceous limonoids: Chemistry and biological activities. Chem. Rev. 111: 7437-7522. https://doi.org/10.1021/cr9004023
  20. Waterman, P. G. and M. F. Grundon. 1983. Chemistry and Chemical Taxonomy of the Rutales, 1st Ed. Academic Press, London.

Cited by

  1. A study of Raphanus sativus and its endophytes as carbonyl group bioreducing agents vol.33, pp.2, 2015, https://doi.org/10.3109/10242422.2015.1053471
  2. Insights into Penicillium brasilianum Secondary Metabolism and Its Biotechnological Potential vol.22, pp.6, 2017, https://doi.org/10.3390/molecules22060858
  3. Draft Genome Sequence of the Fungus Penicillium brasilianum (Strain LaBioMMi 136), a Plant Endophyte from Melia azedarach vol.7, pp.21, 2012, https://doi.org/10.1128/mra.01235-18
  4. Tuning of the enzyme ratio in a neutral redox convergent cascade: A key approach for an efficient one‐pot/two‐step biocatalytic whole‐cell system vol.116, pp.11, 2019, https://doi.org/10.1002/bit.27133
  5. Endophytic Penicillium species and their agricultural, biotechnological, and pharmaceutical applications vol.10, pp.3, 2012, https://doi.org/10.1007/s13205-020-2081-1
  6. Fungal Biotransformation: An Efficient Approach for Stereoselective Chemical Reactions vol.24, pp.24, 2012, https://doi.org/10.2174/1385272824999201111203506