• 제목/요약/키워드: Feature-based model

검색결과 2,088건 처리시간 0.037초

특징형상기반 다중해상도 모델링 기법에 관한 연구 (A Survey of Feature-based Multiresolution Modeling Techniques)

  • 이상헌
    • 한국CDE학회논문집
    • /
    • 제14권3호
    • /
    • pp.137-149
    • /
    • 2009
  • For recent years, there has been significant research achievement on the feature-based multiresolution modeling technique along with widely application of three-dimensional feature-based CAD system in the areas of design, analysis, and manufacturing. The research has focused on several topics: topological frameworks for representing multiresolution solid model, criteria for the LOD, generation of valid models after rearrangement of features, and applications. This paper surveys the relevant research on these topics and suggests the future work for dissemination of this technology.

절대 유사 임계값 기반 사례기반추론과 유전자 알고리즘을 활용한 시스템 트레이딩 (System Trading using Case-based Reasoning based on Absolute Similarity Threshold and Genetic Algorithm)

  • 한현웅;안현철
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제26권3호
    • /
    • pp.63-90
    • /
    • 2017
  • Purpose This study proposes a novel system trading model using case-based reasoning (CBR) based on absolute similarity threshold. The proposed model is designed to optimize the absolute similarity threshold, feature selection, and instance selection of CBR by using genetic algorithm (GA). With these mechanisms, it enables us to yield higher returns from stock market trading. Design/Methodology/Approach The proposed CBR model uses the absolute similarity threshold varying from 0 to 1, which serves as a criterion for selecting appropriate neighbors in the nearest neighbor (NN) algorithm. Since it determines the nearest neighbors on an absolute basis, it fails to select the appropriate neighbors from time to time. In system trading, it is interpreted as the signal of 'hold'. That is, the system trading model proposed in this study makes trading decisions such as 'buy' or 'sell' only if the model produces a clear signal for stock market prediction. Also, in order to improve the prediction accuracy and the rate of return, the proposed model adopts optimal feature selection and instance selection, which are known to be very effective in enhancing the performance of CBR. To validate the usefulness of the proposed model, we applied it to the index trading of KOSPI200 from 2009 to 2016. Findings Experimental results showed that the proposed model with optimal feature or instance selection could yield higher returns compared to the benchmark as well as the various comparison models (including logistic regression, multiple discriminant analysis, artificial neural network, support vector machine, and traditional CBR). In particular, the proposed model with optimal instance selection showed the best rate of return among all the models. This implies that the application of CBR with the absolute similarity threshold as well as the optimal instance selection may be effective in system trading from the perspective of returns.

잡음 환경에 효과적인 음성 인식을 위한 Gaussian mixture model deep neural network 하이브리드 기반의 특징 보상 (A study on Gaussian mixture model deep neural network hybrid-based feature compensation for robust speech recognition in noisy environments)

  • 윤기무;김우일
    • 한국음향학회지
    • /
    • 제37권6호
    • /
    • pp.506-511
    • /
    • 2018
  • 본 논문에서는 잡음 환경에서 효과적인 음성인식을 위하여 GMM(Gaussian Mixture Model)-DNN(Deep Neural Network) 하이브리드 기반의 특징 보상 기법을 제안한다. 기존의 GMM 기반의 특징 보상에서 필요로 하는 사후 확률을 DNN을 통해 계산한다. Aurora 2.0 데이터를 이용한 음성 인식 성능 평가에서 본 논문에서 제안한 GMM-DNN 하이브리드 기법이 기존의 GMM 기반 기법에 비해 Known, Unknown 잡음 환경에서 모두 평균적으로 우수한 성능을 나타낸다. 특히 Unknown 잡음 환경에서 평균 오류율이 9.13 %의 상대 향상률을 나타내고, 낮은 SNR(Signal to Noise Ratio) 잡음 환경에서 상당히 우수한 성능을 보인다.

Improved Algorithm for Fully-automated Neural Spike Sorting based on Projection Pursuit and Gaussian Mixture Model

  • Kim, Kyung-Hwan
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권6호
    • /
    • pp.705-713
    • /
    • 2006
  • For the analysis of multiunit extracellular neural signals as multiple spike trains, neural spike sorting is essential. Existing algorithms for the spike sorting have been unsatisfactory when the signal-to-noise ratio(SNR) is low, especially for implementation of fully-automated systems. We present a novel method that shows satisfactory performance even under low SNR, and compare its performance with a recent method based on principal component analysis(PCA) and fuzzy c-means(FCM) clustering algorithm. Our system consists of a spike detector that shows high performance under low SNR, a feature extractor that utilizes projection pursuit based on negentropy maximization, and an unsupervised classifier based on Gaussian mixture model. It is shown that the proposed feature extractor gives better performance compared to the PCA, and the proposed combination of spike detector, feature extraction, and unsupervised classification yields much better performance than the PCA-FCM, in that the realization of fully-automated unsupervised spike sorting becomes more feasible.

A Fractional Integration Analysis on Daily FX Implied Volatility: Long Memory Feature and Structural Changes

  • Han, Young-Wook
    • 아태비즈니스연구
    • /
    • 제13권2호
    • /
    • pp.23-37
    • /
    • 2022
  • Purpose - The purpose of this paper is to analyze the dynamic factors of the daily FX implied volatility based on the fractional integration methods focusing on long memory feature and structural changes. Design/methodology/approach - This paper uses the daily FX implied volatility data of the EUR-USD and the JPY-USD exchange rates. For the fractional integration analysis, this paper first applies the basic ARFIMA-FIGARCH model and the Local Whittle method to explore the long memory feature in the implied volatility series. Then, this paper employs the Adaptive-ARFIMA-Adaptive-FIGARCH model with a flexible Fourier form to allow for the structural changes with the long memory feature in the implied volatility series. Findings - This paper finds statistical evidence of the long memory feature in the first two moments of the implied volatility series. And, this paper shows that the structural changes appear to be an important factor and that neglecting the structural changes may lead to an upward bias in the long memory feature of the implied volatility series. Research implications or Originality - The implied volatility has widely been believed to be the market's best forecast regarding the future volatility in FX markets, and modeling the evolution of the implied volatility is quite important as it has clear implications for the behavior of the exchange rates in FX markets. The Adaptive-ARFIMA-Adaptive-FIGARCH model could be an excellent description for the FX implied volatility series

적분영상 기반 특징 정보 예측을 통한 고속 보행자 검출 (Fast Pedestrian Detection Using Estimation of Feature Information Based on Integral Image)

  • 김재도;한영준
    • 전기전자학회논문지
    • /
    • 제17권4호
    • /
    • pp.469-477
    • /
    • 2013
  • 본 논문은 특징 정보 예측을 통한 빠른 보행자 검출 기법을 제안한다. 다양한 크기의 보행자를 검출하기 위해 보행자 모델의 크기나 입력영상의 크기를 변화시킨다. 보행자 모델의 크기를 변화시킬 경우 크기별 모델이 필요하며, 보행자 모델의 크기의 축소시키는 경우 모델 정보를 손상시킨다. 보행자 모델의 다양한 크기별 보행자의 특징을 추출해야 하므로 보행자 특징의 추출은 전체 수행시간 중 가장 많은 시간을 필요로 한다. 따라서 본 논문은 영상 크기에 따라 특징 추출을 반복하지 않고 입력영상에서 얻어진 특징 정보의 예측을 통해 보행자 검출의 특징추출을 수행한다. 제안하는 방법의 효율성을 검증하기 위해 다양한 채널을 가진 ChnFtrs 특징 및 Adaboost 알고리즘을 사용과 학습과 실험을 위한 영상으로 INRIA 보행자 DB를 사용하였다.

진보된 다단계 특징벡터 기반의 분류기 모델 (Advanced Multistage Feature-based Classification Model)

  • 김재영;박동철
    • 전자공학회논문지CI
    • /
    • 제47권3호
    • /
    • pp.36-41
    • /
    • 2010
  • 본 논문에서는 다단계 특성벡터 기반의 분류기 모델(Multistage Feature-based Classification Model: MFCM)의 성능을 향상시킨 진보된 형태의 MFCM (Advanced MFCM: AMFCM)을 제안하는데, AMFCM은 MFCM과 같이 주어진 데이터에서 추출된 전체의 특징벡터를 연결하여 이용하지 않고, 같은 성질의 특징벡터들끼리 모아서, 각각의 국지적 학습기를 통하여 분류에 이용한다. 그러나, AMFCM은 MFCM에서 사용되는 각각의 국지적 분류기를 위한 각 특징벡터의 분류기여도를 더욱 섬세하게 조정하여 최종적인 분류의 정확도를 높이는 방안을 제안한다. 제안된 AMFCM의 성능을 검증하기 위하여, 음악장르 분류의 문제에 대한 실험을 진행하였다. 또한, 국지적 분류기로 Self-Organizing Map과 중심 신경망을 사용하여 실험을 수행하였는데, 제안된 AMFCM은 사용된 국지적 분류기의 종류와 사용된 군집의 개수에 따라 기존의 MFCM에 비해 평균 8% - 15% 이상의 성능향상을 보여 준다.

소프트웨어 제품 계열 공학의 온톨로지 기반 휘처 공동성 및 가변성 분석 기법 (Ontology-based Approach to Analyzing Commonality and Variability of Features in the Software Product Line Engineering)

  • 이순복;김진우;송치양;김영갑;권주흠;이태웅;김현석;백두권
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권3호
    • /
    • pp.196-211
    • /
    • 2007
  • 제품 계열 공학에서 제품의 공통성 및 가변성 분석을 결정짓게 하는 기준인 휘처 (feature) 분석에 대한 기존 연구는 개발자의 직관이나 도메인 전문가의 경험에 근간으로 분석 기준이 객관적이지 못하며, 비정형적인 휘처 분석으로 인한 이해 당사자 (stakeholder)의 공통된 휘처의 이해 부족 및 불명확한 휘처를 추출하는 문제점이 있었고, 기 개발된 소프트웨어에서 사용된 휘처의 재사용 개념이 부족했었다. 본 논문에서는 특정 도메인의 휘처 모델을 온톨로지로 변환하여 의미 기반 유사성 분석 기준에 의해 휘처의 공통성과 가변성을 추출하는 기법을 제시한다. 이를 위해, 먼저 공통된 휘처 중심의 메타 휘처 모델 기반으로 휘처의 속성을 정립하고, 메타 모텔에 준거하여 휘처 모델을 생성하여 온톨로지로 변환 후, 휘처 온톨로지 리포지토리 (Repository)에 저장한다. 이후, 동일 제품 계열 도메인의 휘처 모델 구축 시, 기 존 생성 모델과 온톨로지의 의미 기반 유사성 비교 분석 기법을 통해 휘처의 공통성과 가변성을 추출하는 것이다 또한 유사성 비교 알고리즘을 툴로 구현하였으며, 전자 결재 시스템 도메인의 실험 및 평가를 통 해 효과성을 보인다. 본 기법을 통해 메타 휘처 모델의 구문적 정립으로 이해성과 정확성을 제고시켜 고품질의 휘처 모델을 구축할 수 있으며, 온톨로지의 의미 기반 매핑으로 휘처의 공통성 및 가변성 추출을 정형화할 수 있고, 재사용성을 향상시킬 수 있다.

시각적 선택에 대한 신경 망 모형FeatureGate 모형의 하향식 기제 (A Neural Network Model for Visual Selection: Top-down mechanism of Feature Gate model)

  • 김민식
    • 인지과학
    • /
    • 제10권3호
    • /
    • pp.1-15
    • /
    • 1999
  • 시각적 선택에 대한 과거 정신물리학적, 신경 생리학적 연구결과를 토대로 Feature Gate 라는 신경 망 모형을 제안하였다. 이 모형에는 공간 배치도가 위계 적으로 구성되어 있으며, 정보의 흐름이 위계의 각 수준으로부터 그 다음 수준으로 넘어갈 때 주의 게이트에 의해 조절되도록 되어 있다. 주의 게이트들은 독특한 세부 특징을 가진 위치에 반응하는 상향식 시스템과 표적 세부 특징이 있는 위치에 반응하는 하향식 기제 모두에 의해 조절된다. 본 연구는 Feature Gate 모형의 하향식 기제에 초점을 맞추어 모형을 설명하고, 현재 다른 모형들이 설명하지 못하는 Moran & Desimone(1985)의 연구결과를 이 모형이 어떻게 설명하는지를 제시하고자 한다. Feature Gate 모형은 병렬 적인 세부특징 검색, 계열 적 접합표적 검색, 단서에 의한 주의의 점진적 감소 모형, 세부특징-주도적인 공간적 선택, 주의의 분할, 방해자극 위치의 억제, 주변 억제 등을 포함한 시각적 주의 연구의 여러 가지 많은 현상들을 설명하는데 하나의 일관적인 해석을 제공해 준다. 앞으로 이 모형을 더욱 확장, 발전 시켜 세부특징의 조합된 배열에 반응하는 상위 수준의 유닛을 사용한다면 시각적 선택과정이 포함된 형태 재인 모형으로 개발될 수 있다.

  • PDF

Convolutional Neural Network Based Multi-feature Fusion for Non-rigid 3D Model Retrieval

  • Zeng, Hui;Liu, Yanrong;Li, Siqi;Che, JianYong;Wang, Xiuqing
    • Journal of Information Processing Systems
    • /
    • 제14권1호
    • /
    • pp.176-190
    • /
    • 2018
  • This paper presents a novel convolutional neural network based multi-feature fusion learning method for non-rigid 3D model retrieval, which can investigate the useful discriminative information of the heat kernel signature (HKS) descriptor and the wave kernel signature (WKS) descriptor. At first, we compute the 2D shape distributions of the two kinds of descriptors to represent the 3D model and use them as the input to the networks. Then we construct two convolutional neural networks for the HKS distribution and the WKS distribution separately, and use the multi-feature fusion layer to connect them. The fusion layer not only can exploit more discriminative characteristics of the two descriptors, but also can complement the correlated information between the two kinds of descriptors. Furthermore, to further improve the performance of the description ability, the cross-connected layer is built to combine the low-level features with high-level features. Extensive experiments have validated the effectiveness of the designed multi-feature fusion learning method.