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Improved Algorithm for Fully-automated Neural Spike Sorting based

on Projection Pursuit and Gaussian Mixture Model

Kyung Hwan Kim

Abstract: For the analysis of multiunit extracellular neural signals as multiple spike trains,
neural spike sorting is essential. Existing algorithms for the spike sorting have been
unsatisfactory when the signal-to-noise ratio (SNR) is low, especially for implementation of
fully-automated systems. We present a novel method that shows satisfactory performance even
under low SNR, and compare its performance with a recent method based on principal
component analysis (PCA) and fuzzy c-means (FCM) clustering algorithm. Our system consists
of a spike detector that shows high performance under low SNR, a feature extractor that utilizes
projection pursuit based on negentropy maximization, and an unsupervised classifier based on
Gaussian mixture model. It is shown that the proposed feature extractor gives better performance
compared to the PCA, and the proposed combination of spike detector, feature extraction, and
unsupervised classification yields much better performance than the PCA-FCM, in that the
realization of fully-automated unsupervised spike sorting becomes more feasible.
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classification.

1. INTRODUCTION

The extracellular recordings of action potentials
from multiple neurons have been a major means for
the investigation of the nervous system [1,2], and
recently they are also being exploited as a major tool
for the brain-machine interface [3,4]. A single electrode
site gives action potentials from several neurons that
are close to the electrode site under investigation, thus
it is necessary to transform the recorded waveform
into spike trains from each neuron. This procedure is
called neural spike sorting. Many automatic and semi-
automatic spike sorting methods have been proposed
during the past several decades [5,6].

Fig. 1(a) presents a detailed illustration of neural
spike sorting procedure. From a microelectrode placed
in extracellular space, action potentials from many
single neurons adjacent to the electrode site, which are
called ‘units’, are acquired. Since the information of
the nervous system is mainly encoded in the timing or
occurrence rates of action potentials from single
neurons, the multiunit extracellular recording should
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be separated into multiple spike trains in which the
timing of each action potential firing can be
determined. As shown in Fig. 1(b), the spike sorting
system is usually composed of a dimensionality
reduction stage, and a pattern classifier. The input and
output of the system is the detected action potential
waveform and the label of each waveform, i.e., the
name of neuron to which the input waveform belongs.
Each detected action potential waveform yields a
feature vector, and the dimension is reduced so that it
can be effectively handled by an unsupervised
classifier. The number of units must also be estimated
from the data, without prior knowledge.

Under the condition when a supervised classifier
can be used, acceptable results can be obtained even
under very high background noise as shown in [7] and
[8]. However, a fully-automated method for the spike
sorting is necessary, at least in the first analysis of
experimental data, which sets a basis for the further
analysis where the supervised classification algorithm
is used for the spike sorting. Zouridakis and Tam [9]
suggested a method to solve this problem, regarding
this as a template identification problem. Although
this is correct when the template matching is used for
the supervised sorting, it is not so when a more
powerful algorithm is used for the supervised
classification. For example, when Mahalanobis
distance is used as a criterion for the spike sorting, the
distribution of feature vectors within each cluster as
well as the template waveform of each cluster must be
known. When a neural-network-type classifier such as
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Fig. 1.

multilayer perceptron or support vector machine is
used, the true class label of each feature vector in the
training set should be known. This clarifies the
necessity of the full procedure of unsupervised
classification for the fully-automated spike sorting.

In several recent studies including Fee et al. [10],
Sahani [11], and Shoham et al. [12], the performances
under low signal-to-noise ratio (SNR) conditions have
not been demonstrated. Recently, we also have
proposed a novel unsupervised spike sorting
algorithm and have shown its high performance under
low SNR [13]. Our approach was to combine
projection pursuit based on negentropy maximization
(PP/NEM), and an unsupervised classification
algorithm based on the modeling of probability
density function (pdf) by Gaussian mixture model
(GMM). We also proposed an efficient spike detector
that shows high performance under low SNR using
wavelet transform [14].

In this paper we present a system for fully-

automated spike sorting by combining those two
previous results, and give a more detailed presentation
of the superior performance of our method in
implementing the fully automated spike sorting. We
also provide a comparison between our method and an
unsupervised spike sorting based on principal
component analysis (PCA), and fuzzy c-means (FCM)
clustering [15]. Although it is a natural choice for the
projection, the performance of the PCA as a feature
extractor for spike sorting is not satisfactory under
low SNR, and even when the SNR is quite high, the
PCA may give unsatisfactory results as we
demonstrate in this paper.

Although the k-means-type clustering algorithms
have been applied for many problems involving
unsupervised pattern classification and suggested as a
method to implement a fully automated spike sorting
[15,16], it may yield insufficient performance, since
the shape of distribution of feature vectors cannot be
considered. In addition, cluster validity indices, which
were proposed to estimate the number of clusters for
the k-means-type clustering algorithms [17], does not
give robust estimation of the true number of units in
the detected action potential waveforms. Our methods
can take into account the anisotropic shape of
distribution, and thus provide a solution to the
problem of determining the number of units in the
recording.

2. SPIKE DETECTION AND SORTING
ALGORITHM

Fig. 1(b) shows the overall structure of our spike
sorting system. Detected action potential waveforms
are given to the block that performs dimensionality
reduction, after which extracted feature vectors are
given as input to the unsupervised -classifier.
Dimensionality reduction is employed because
successful training of the unsupervised classifier
became much easier after the dimensionality reduction.
Here we suggest a novel method using PP'NEM for
the feature extraction, and GMM for the unsupervised
classification.

2.1. Wavelet-transform-based spike detector

Typically, a wavelet basis has a spiky waveform
shape. The scale (i.e., the time duration) of the basis is
varied during the procedure of wavelet transform.
Thus at some particular scales where the duration of
neural spikes and that of the scaled wavelet basis are
matched, the wavelet basis provides a useful
approximation to the matched filter, which is known
to be the optimal linear filter for the waveform
detection. If the match between the neural spike
waveform and the scaled basis is perfect, and the
background noise is white Gaussian, the wavelet basis
can be regarded as the matched filter. In this regard,
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although this assumption is not valid obviously in
practice, an efficient detector can be devised, by
performing wavelet decomposition over many scales
and selecting some of the scales which are matched to
the duration of the action potential waveform.

The details of the procedure are described below.
First, the absolute values of wavelet coefficients are
calculated for 5 dyadic scales, i.e., 2'~2°. The scale
where the absolute value yields a maximum, called, is
selected. Subsequently, the point-wise product of the
wavelet coefficients over three successive scales up to
2™ P(n), is calculated for all time samples, n, as
follows:

P(n) = ]ﬁ {W(zf ,n)’. (1)

J=Jmax =2

We found that the choice of three consecutive
dyadic scales up to 2™ is appropriate for most cases
of neural spike detection. The inclusion of very large
or small scales considerably decreased the signal
peaks in the waveform of P(n) because correlation
between the scaled wavelet basis and the target signal
(neural spike) is decreased for those scales. When too
coarse a scale is included, the signal peaks in P(n)
also decreased because of a large mismatch in the
location of peaks among different scales. The wavelet
decomposition into dyadic scales is computed by
discrete wavelet transform (DWT). The DWT can be
performed by successive applications of a bank of
quadrature mirror filters and decimation by factor of
two between them. The coiflet basis function was
adopted.

Finally the P(n) is smoothed by convolution with
the Bartlett window to lessen malicious effects of
spurious peaks due to cross terms, background noise,
and mismatches in the location of the signal peaks
among different scales. The window length was
empirically determined to be about half the duration
of the neural spike. The final output of the proposed
action potential detector, 7(n), is expressed as follows:

jmax i
T(n)=w(n)* Pm)=w(m*| || ]W(zf,n)] .2)

J=Jmax=2
Here w(n) denotes the Bartlett window.

2.2. Feature extraction and automated unsupervised
classification
A dimensionality reduction based on linear transform
is used for the feature extraction. The linear transform
is expressed as y=W’x where x is m-dimensional
observed vector (in this case, samples of the detected
action potential waveform), y is n-dimensional
random vector (n < m), and W is an mxn matrix. The
projection matrix W must be determined so that the

components of y become discriminative features, that
is, the separability among clusters is maximized. This
type of problem is called projection pursuit (PP). The
PCA is also a kind of linear transform, but the
transformation matrix for the PCA is obtained by a
criterion of maximal variance. Although it can be
regarded as an optimal linear projection for the data
representation, it is not so for the pattern classification.
An appropriate objective function must be defined to
find W that maximizes the separability for the
projection pursuit. The measure of non-Gaussianity is
appropriate for this purpose considering the well-
known fact that the multimodality of given high
dimensional data might be represented most lucidly in
the direction where non-Gaussianity is maximized
{18], and the multimodality in the resulting

distribution is desirable for clustering [19]. It is also
well known that entropy is minimized for the most
non-Gaussian distribution; since it has a small value
for the distribution that is concentrated on certain
values, i.e., when the variable is clearly clustered.
This relation of non-Gaussianity and entropy is used
to derive the projection that maximizes separability.
We call the employed method of dimensionality
reduction projection pursuit based on negentropy
maximization (PP/NEM). The detailed procedure of
performing PP/NEM is described in [13].

In many cases where the feature extraction is
performed by a linear transform, the extracted feature
vectors form a distribution with elongated shape
because the degree of scatter is different for each
component. Therefore we can deduce that an
unsupervised classification method, by which the
cluster shape can be considered, should yield much
improved performance. In the case where the FCM is
used for the classification, cluster validity index is
used for the determination of the number of clusters.
The cluster validity index is defined as a ratio of the
spread within a cluster and the distance among each
cluster’s centroids. By calculating the index as a
function of the tentative number of clusters, it is
possible to estimate the true number of clusters since
we can assume that the true number of clusters
corresponds to the one that yields minimum index. It
is because the index is minimized when the spread
within a cluster is minimized and the distance among
cluster centroids is maximized. The details on FCM
and cluster validity index, and their application to the
fully automated spike sorting are given in Xie and
Beni [17] and [15], respectively.

The GMM-based clustering has been utilized for
many unsupervised pattern classification problems
[20]. It was also used for the neural spike sorting by
Sahani [11]. We focused on the problem of
determining the optimal number of Gaussians in the
mixture for the spike sorting. We showed that this
problem can be settled by using a roughly estimated
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number of Gaussians and then subsequently seeking
the modes of the obtained pdf model.
The GMM model is defined as follows:

K K
p(x) =Y p(myp(x|m)=) z, p(x|m). 3)

m=1 m=1

Here m, is the prior probability of the m’th
Gaussian. K denotes the number of Gaussians used to
represent the pdf of given data. Each p(x|m) is a
Gaussian distribution function, i.e.,

p(x|m)=g(x|p,,E,)=g(x|0,) 4

. 1
— 1 “1,)
=I2”Zml 2 eXp[_E(X—"m)TEmI(X_um)j-

Here g(x|pm,Zm) is the m’th Gaussian whose mean
vector and covariance matrix are p,, and X,
respectively. The parameter vectors of GMM, 0 can be
iteratively estimated by the application of expectation-
maximization (EM) algorithm [20].

The number of Gaussians in GMM, K, must be
determined prior to the parameter estimation.
Although it is expected that a considerable amount of
variability in the resulting GMM pdf model might
occur when different K values are used, the obtained
pdf models are quite similar for different K’s in the
case of neural spike sorting if K value is slightly larger
that the actual number of clusters. In this case, when
the means of two specific Gaussians are close to each
other, these two are merged to form a single peak and
the number of modes of overall estimated pdf
becomes the same as the number of units in the
recording.

The problem of determining K for the GMM
parameter estimation can be considered to be a
decision problem where the maximum-(log)
likelihood (ML) estimation can be applied. However,
the likelihood is a monotonically increasing function
of the number of parameters; a number of criteria for
the determination of the number of parameters, such
as Akaike’s information criteria (AIC) have been
proposed [21]. However, they often fail to give a
satisfactory result in practice. Instead, we use a
method based on the behavior of the log-likelihood vs.
K curve. This curve typically shows rapid initial
increment behavior, followed by a slow increment
[22]. The actual number of clusters is located slightly
above the ‘knee’ of this curve. A satisfactory
estimation of the GMM parameters is possible when
the value of K is set to be slightly larger than the
actual number of clusters and does not need to be
accurate; it is possible to determine the value of K to
be used as follows. First, the log-likelihood is
calculated for several values of the number of
Gaussians and then, the position of the ‘knee’ is

determined by finding the maximum of the derivative
of the log-likelihood with respect to the number of
Gaussians. -

An actual procedure for applying the identified
GMM to the unsupervised neural spike sorting is as
follows. Because the number of Gaussians can be
different from the true number of units, in order to use
the obtained GMM for classification, it is necessary to
identify the number and position of ‘modes’ (local
maxima of GMM) in the mixture model of pdf, and to
assign each Gaussian in the mixture to a specific
mode. After identifying the local maxima, each mean
of Gaussians is assigned to the closest local maximum
so that the pdf of a single cluster (i.e., a single unit)
can be represented by a partial sum of the Gaussians
as follows:

L
pr(X)= D 7 &(X| 1y, E), (5)

m=1

where pi(x) denotes the pdf of the /’th cluster, and L is
the total number of Gaussians, the center of which is
closest to the ’th mode. The class label of a particular
data point x is determined from the label of maximum
pdf. The mode-finding of the GMM is performed by
quadratic maximization or gradient ascent method
[23]. This procedure is facilitated by the closed-form
expression of the gradient and Hessian of the GMM
[24].

3. EXPERIEMENTS

The details of the extracellular neural signal
recording have been described thoroughly in Kim and
Kim [8], and Yoon et al. [25]. The extracellular
recordings from the somatosensory cortex of a
Sprague-Dawley rat and the abdominal ganglion of
the Aplysia were performed wusing thin-film
semiconductor microelectrodes, the impedance ranges
of which were 2-3 MQ at 1 kHz. Bandpass filtering
(100 Hz — 5 kHz for the Aplysia recording, 300 Hz — 3
kHz for rat recording, respectively) was employed.
The sampling rate was 10 ksamples/sec and 20
ksamples/sec, for the Aplysia and rat recording,
respectively. The template waveforms were extracted
by a human supervisor assisted by efficient neural
spike detectors described in [8] and Kim and Kim [14],
and the FCM clustering of waveforms at a rzasonably
high SNR. The action potential segments consisted of
25 samples and 40 samples for the Aplysia and for the
rat recording, respectively. The template waveforms
of the action potentials from three single neurons
extracted from the rat recording are shown in Fig. 2,
and those of the Aplysia recording can be found in [8].

We also obtained the autoregressive (AR) models
of background noise from the neural signal recordings,
in order to generate test data that faithfully represents
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Fig. 2. Four template waveforms of the action
potentials from rat somatosensory cortex.
Each unit consists of 40 samples (2 ms).

the actual characteristics of experimental recordings.
The AR model coefficients were identified from
background noise segments of approximately 300
samples by Burg’s algorithm [26] -along with order
determination using Akaike information criteria.
Accurate determination of the order was not essential
for effective modeling. From the template waveforms
of several units and the AR model of the background
noise, it becomes possible to generate the waveforms
of arbitrary SNR that have the characteristics of real
experimental recordings.

4. RESULTS

4.1. Comparison of PCA and PP/NEM for feature
extraction in spike sorting system

For the purpose of quantitative comparison of the
efficacies of linear transforms, we used two
performance indices based on scatter matrix. Each
index is a function of transform matrix W. The first
index is used for Fisher’s linear discriminant analysis,
and is defined as follows:

det(Sp)  det(WTSzW)

S(W)=—— 7 ; (6)
det(s,,) WS, W)
swzis,., S; =Y (x-m)(x-m,),
o (M

Sp = i (m; —m)(m; - m)T s

i=1

where X, m,, and m means the feature vector, the
mean vector of the ith cluster, and the overall mean
vector, respectively.

Because the determinant of the scatter matrix
corresponds to the square of the volume of hyper-
ellipsoidal scattering, J;(W) is the ratio between the
separation of each cluster and the scattering within a
single cluster. The second index, which can be
interpreted in similar context, is defined as follows:

Jo (W) =Trace(W'S , W) WIS ; W), 9)

Fig. 3(a) and (b) show the separability indices
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Fig. 3. Separability indices (a) J; and (b) J, obtained
for the four unit rat cortex data under various
SNRs.

under various SNRs (three unit rat cortex data). It is
shown that the PP/NEM is superior to the PCA for a
broad range of SNRs. The separability indices were
obtained from the data where 2100 waveforms (700
waveforms for each unit) were included. For some
data where one of the units has a template waveform
distinctly different from the other two (shown in Fig.
4(a)), the PCA gave better separability as indicated by
the scatter plot in Fig. 4(b) and (c). However,
considering the discrimination of similar waveforms,
the PP/NEM demonstrated better performance also as
shown in Fig. 5. Fig. 5(b) and (c) present the results of
projection by the PP/NEM and PCA when another
unit with a waveform similar to the two waveforms in
Fig. 4(a) is added (see Fig. 5(a)). The PCA results in a
severe overlap among clusters of similar template
waveforms, whereas the PP/NEM consistently gives
reasonable projections. The PP/NEM consistently
showed superior performance, thus justifying our
choice of the PP/NEM for the fully-automated spike
sorting. We also compared the efficacies of PP/NEM
and PCA, for the classification. Fig. 6(a) and (b) show
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Fig. 4. Projection of the rat cortex data where one of
the units (denoted by *’) has template
waveform distinctly different to the other two.
(a) Template waveforms; (b) PP/NEM scatter
plot; (c) PCA scatter plot. Here, the PCA gives
better separability.

clustering results by gray level when the PCA and

PP/NEM were used for feature extraction, respectively.

It became obvious that successful unsupervised
sorting is possible by using FCM after PP/NEM, for
the data where the FCM is inapplicable after the PCA.

However, in some cases when the extracted feature
vectors formed an elongated cluster shape and when
inter-cluster distances were short (for example, Fig.
7(a)), the FCM often yielded a totally incorrect
clustering result as seen in Fig. 7(b), because the
distances between data points and the means were
represented by Euclidean distance so that cluster
shape cannot be considered for clustering. In this case,
the determination of the number of units by the cluster
validity index was not possible, either. This clarifies
the necessity of an unsupervised classification method
by which non-spherical (anisotropic) cluster shape can
be considered.

4.2. Performance of the PP/ANEM-GMM spike sorting
algorithm
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Fig. 5. Projection by the PP/NEM and PCA when
another unit with waveform similar to the
two waveforms in Fig. 4 (denoted by ‘**°) is
added. PCA results in a severe overlap
among clusters of similar template wave-
forms, whereas the PP/NEM consistently
gives reasonable projections. (a) Template
waveforms; (b) PP/NEM scatter plot; (c)
PCA scatter plot.

We demonstrate the performance of the PP/NEM-
GMM spike sorting system for the data where a
successful clustering was impossible by the PP/NEM-
FCM as in the case of Fig. 7(b). Fig. 7(c) shows the
estimated pdf using four Gaussians. It is clear that we
could obtain quite a reasonable result having three
peaks. Next, Fig. 7(d) shows the result of pdf
estimation using five Gaussians. The use of five
Gaussians also yielded reasonable results, and thus, it
was demonstrated that the result of pdf modeling by
the GMM was not dependent so much on the number
of Gaussians. Therefore the classification result
should be much less affected by a parameter that must
be predetermined compared to the case of k-means-
type algorithms, so that the fully-automated system
based on the GMM would be expected to be much
more reliable.

The estimation of the modes (local maxima) of the
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Fig. 6. Efficacy of each projection methods on
clustering. (a) On the projected data using
PCA. (b) On the projected data using
PP/NEM.
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GMMs, which correspond to the average waveforms
of each unit, was successful for the two cases (using 4
and 5 Gaussians). The modes found are shown as
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/NEM-FCM spike sorting systems. Correct
classification ratio under various SNRs were
calculated (ten rat somatosensory cortex
recordings with 2100 neural spikes were
tested for each SNR).

triangles, and the locations of the projections of the
true template waveforms are denoted by squares in
Fig. 7(c) and (d). The classification success rates were
virtually the same for two cases (96.5 and 96.2% for 4
and 5 Gaussians, respectively). When we used
PP/NEM-FCM with the proper number of clusters (3
clusters), the best success rate obtained was only 67 %.

We compared the performances of PP/NEM-FCM
and PP/NEM-GMM sorting systems in detail under
various SNR’s. Fig. 8 demonstrates the advantage of
our method clearly. Correct classification ratios were
shown as a function of SNR. For each SNR, ten
recordings with 2100 neural spikes (700 for each unit)
were given as input to the spike sorting system. The
dimension of projected feature vectors were fixed to
two, since the increase of dimension gave no
considerable performance improvement and was
computationally inefficient (mainly due to the
computational burden in GMM parameter estimation
using EM algorithm).

5. DISCUSSION AND CONCLUSIONS

The fully automated spike sorting is essential in the
first analysis of multiunit extracellular neural signal.
The importance of this system has been pointed out in
several recent studies [27,28], however, a detailed
presentation of the sorting performance under low
SNR has not been reported. The purpose of this paper
was to give a comprehensive presentation of the
superior performance of the fully automated spike
sorting system based on the combination of PP/NEM-
GMM under various situations. By applying a feature
extraction/dimensionality reduction using negentropy
maximization, we could achieve much higher
separability than conventional methods such as PCA.
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The problem of anisotropic cluster shape and close
distance of each cluster prevented successful
unsupervised classification using the clustering
algorithms based on Euclidean distance, such as the .-
means algorithm. The problem was alleviated by
modeling overall distribution of feature vectors as the
GMM. After that, local maxima of the GMM were
sought, and each mean of Gaussians in the mixture
was assigned to one of these local maxima. In order to
deal with a severely non-Gaussian background noise,
an unsupervised classification using mixture of #-
distribution [12] may be employed while retaining the
structure of the proposed spike sorting algorithm.

It was shown that its performance is better than the
PCA-FCM system in two respects: 1) superiority
under low SNR, 2) superiority for the fully-automated
system (i.e., it is not so much dependent on the
parameter that should be predetermined.). In the past,
manual analysis by the human supervisor was a good
choice, because it showed often better performance
than many automatic algorithms and only a few
channels were analyzed (although it is tedious).
However, for the purpose of multichannel recording
up to hundreds of channels [27], the importance of
capability of the fully automated system is evident.
Because of the advance of multichannel electrodes
and the computational hardware, the automated
detection and classification system will become
indispensable in the future as an essential
preprocessing stage for the further study of neuronal
systems involving analysis of the multiple neuronal
spike train. It will be possible to find many
applications of the fully automated spike sorting
system, in that it is becoming more important to
investigate the interrelated behavior of the network of
neurons by analyzing hundreds of channels of neural
signal recording.

Whereas it has been conventional to analyze the
recordings showing sufficiently good quality, it is
greatly beneficial if the range of signal quality that
can be analyzed becomes much broader. Especially,
for the long-term recording whose signal quality can
be degraded in an unpredictable way, successful
operation of the fully automated spike sorting under
high background noise provides a significant
advantage [28].

The proposed method of estimating the overall
distribution as a mixture of Gaussians, and subsequent
classification can be applied without loss of generality
to the cases where the distribution within a single
class is considerably different from Gaussian. In this
case, each sub-pdfs can be modeled as a non-Gaussian
distribution function, such as #-distribution [12].
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