본 논문에서는 현재 진행 중인 MPEG(Motion Picture Experts Group, ISO/IEC JTC1 SC29 WG11)의 표준화 작업 중 CDVS(Compact Descriptor for Visual Search)의 CE-7(Core Experiment)인 특징점 선택에 대한 방법을 제안한다. 서술자의 경량화를 위해서는 영상으로부터 추출된 많은 수의 특징점들 중에서 영상 정합에 사용될 중요한 특징점들을 선택해야 한다. 본 논문에서는 최 인접 거리 비율 정합(Nearest Neighbor distance ratio matching) 방법에 의해 영상 정합 단계에서 사용되지 않고 버려지는 특징점들을 미리 추출 단에서 제거하는 방법 제안하였다. 제안된 방법을 통하여 적은 비트 전송률을 요하는 시스템에서 특징점의 낭비를 피할 수 있고 결과적으로 추가적인 특징점을 사용할 수 있으므로 전체적인 성능 향상을 얻을 수 있었다. 제안된 알고리즘을 통하여 Pair-wise 정합 실험에서 기존의 Test Model 대비 최고 2.3%의 성공율(True positive rate)의 향상을 보였다.
This paper aims to find the most effective feature selection method for the sake of opinion mining tasks. Basically, opinion mining tasks belong to sentiment analysis, which is to categorize opinions of the online texts into positive and negative from a text mining point of view. By using the five product groups dataset such as apparel, books, DVDs, electronics, and kitchen, TF-IDF and Bag-of-Words(BOW) fare calculated to form the product review feature sets. Next, we applied the feature selection methods to see which method reveals most robust results. The results show that the stacking classifier based on those features out of applying Information Gain feature selection method yields best result.
Recently, many techniques have been proposed to improve the noise robustness for speaker verification. In this paper, we consider the feature recombination technique in multi-band approach. In the conventional feature recombination for speaker verification, to compute the likelihoods of speaker models or universal background model, whole feature components are used. This computation method is not effective in a view point of multi-band approach. To deal with non-effectiveness of the conventional feature recombination technique, we introduce a subband likelihood computation, and propose a modified feature recombination using subband likelihoods. In decision step of speaker verification system in noise environments, a few very low likelihood scores of a speaker model or universal background model cause speaker verification system to make wrong decision. To overcome this problem, a reliable feature selection method is proposed. The low likelihood scores of unreliable feature are substituted by likelihood scores of the adaptive noise model. In here, this adaptive noise model is estimated by maximum a posteriori adaptation technique using noise features directly obtained from noisy test speech. The proposed method using subband-based reliable feature selection obtains better performance than conventional feature recombination system. The error reduction rate is more than 31 % compared with the feature recombination-based speaker verification system.
본 논문에서는 시퀀스 이미지에서 스케일-스페이스 필터링을 통한 특징점 추출과 질감도(texturedness) 비교를 적용한 특징점 추적 알고리즘을 제안한다. 특징점을 추출하기 위해서 정의된 오퍼레이터를 이용하는데, 이때 설정되는 스케일 파라미터는 특징점 선정 및 위치 설정에 영향을 주게 되며, 특징점 추적 알고리즘의 성능과도 관계가 있다. 본 논문에서는 스케일-스페이스 필터링을 통한 특징점 선정 및 위치 설정 방안을 제시한다. 영상 시퀀스에서, 카메라 시점 변화 또는 물체의 움직임은 특징점 추적 윈도우내에 아핀 변환을 가지게 하는데, 대응점 추적을 위한 유사도 측정에 어려움을 준다. 본 논문에서는 Shi-Tomasi-Kanade 추적 알고리즘에 기반하여, 아핀 변환에 비교적 견실한 특징점의 질감도 비교를 수행하는 최적 대응점 탐색 방법을 제안한다.
International Journal of Computer Science & Network Security
/
제24권5호
/
pp.212-216
/
2024
Feature Selection have turned into the main point of investigations particularly in bioinformatics where there are numerous applications. Deep learning technique is a useful asset to choose features, anyway not all calculations are on an equivalent balance with regards to selection of relevant features. To be sure, numerous techniques have been proposed to select multiple features using deep learning techniques. Because of the deep learning, neural systems have profited a gigantic top recovery in the previous couple of years. Anyway neural systems are blackbox models and not many endeavors have been made so as to examine the fundamental procedure. In this proposed work a new calculations so as to do feature selection with deep learning systems is introduced. To evaluate our outcomes, we create relapse and grouping issues which enable us to think about every calculation on various fronts: exhibitions, calculation time and limitations. The outcomes acquired are truly encouraging since we figure out how to accomplish our objective by outperforming irregular backwoods exhibitions for each situation. The results prove that the proposed method exhibits better performance than the traditional methods.
International Journal of Computer Science & Network Security
/
제23권9호
/
pp.141-149
/
2023
Repacked mobile apps constitute about 78% of all malware of Android, and it greatly affects the technical ecosystem of Android. Although many methods exist for repacked app detection, most of them suffer from performance issues. In this manuscript, a novel method using the Constant Key Point Selection and Limited Binary Pattern (CKPS: LBP) Feature extraction-based Hashing is proposed for the identification of repacked android applications through the visual similarity, which is a notable feature of repacked applications. The results from the experiment prove that the proposed method can effectively detect the apps that are similar visually even that are even under the double fold content manipulations. From the experimental analysis, it proved that the proposed CKPS: LBP method has a better efficiency of detecting 1354 similar applications from a repository of 95124 applications and also the computational time was 0.91 seconds within which a user could get the decision of whether the app repacked. The overall efficiency of the proposed algorithm is 41% greater than the average of other methods, and the time complexity is found to have been reduced by 31%. The collision probability of the Hashes was 41% better than the average value of the other state of the art methods.
본 논문에서는 퍼지 k-NN과 reconstruction error에 기반을 둔 feature selection을 이용한 lazy 분류기 설계를 제안하였다. Reconstruction error는 locally linear reconstruction의 평가 지수이다. 새로운 입력이 주어지면, 퍼지 k-NN은 local 분류기가 유효한 로컬 영역을 정의하고, 로컬 영역 안에 포함된 데이터 패턴에 하중 값을 할당한다. 로컬 영역과 하중 값을 정의한 우에, feature space의 차원을 감소시키기 위하여 feature selection이 수행된다. Reconstruction error 관점에서 우수한 성능을 가진 여러 개의 feature들이 선택 되어 지면, 다항식의 일종인 분류기가 하중 최소자승법에 의해 결정된다. 실험 결과는 기존의 분류기인 standard neural networks, support vector machine, linear discriminant analysis, and C4.5 trees와 비교 결과를 보인다.
The purpose of this study is to predict Trophic Diatom Index (TDI) in tributaries of the Han River watershed using the random forest algorithm. The one year (2017) and supplied aquatic ecology health data were used. The data includes water quality(BOD, T-N, $NH_3-N$, T-P, $PO_4-P$, water temperature, DO, pH, conductivity, turbidity), hydraulic factors(water width, average water depth, average velocity of water), and TDI score. Seven factors including water temperature, BOD, T-N, $NH_3-N$, T-P, $PO_4-P$, and average water depth are selected by the Correlation Feature Selection. A TDI prediction model was generated by random forest using the seven factors. To evaluate this model, 2017 data set was used first. As a result of the evaluation, $R^2$, % Difference, NSE(Nash-Sutcliffe Efficiency), RMSE(Root Mean Square Error) and accuracy rate show that this model is compatible with predicting TDI. To be more concrete, $R^2$ is 0.93, % Difference is -0.37, NSE is 0.89, RMSE is 8.22 and accuracy rate is 70.4%. Also, additional evaluation using data set more than 17 times the measured point was performed. The results were similar when the 2017 data set were used. The Wilcoxon Signed Ranks Test shows there was no statistically significant difference between actual and predicted data for the 2017 data set. These results can specify the elements which probably affect aquatic ecology health. Also, these will provide direction relative to water quality management for a watershed that must be continuously preserved.
본 논문에서는 얼굴 영역 수술용 네비게이션을 위한 스테레오 비전과 CT 영상을 이용하여 환자-영상 간 정합(Image to patient registration) 알고리즘의 성능을 평가한다. 환자 영상 간 정합은 스테레오 비전 영상의 특징점 추출과 이를 통한 3차원 좌표 계산, 3차원 좌표와 3차원 CT 영상과의 정합 과정을 거친다. 스테레오 비전 영상에서 3가지 얼굴 특징점 추출 방법과 3가지 정합 방법을 사용하여 생성될 수 있는 5가지 조합 중 정합 정확도가 가장 높은 방법을 평가한다. 또한 머리의 회전에 따라 환자 영상 간 정합의 정확도를 비교한다. 실험을 통해 머리의 회전 각도가 약 20도의 범위 내에서 Active Appearance Model과 Pseudo Inverse Matching을 사용한 정합의 정확도가 가장 높았으며, 각도가 20도 이상일 경우 Speeded Up Robust Features와 Iterative Closest Point를 사용하였을 때 정합 정확도가 높았다. 이 결과를 통해 회전각도가 20도 범위 내에서는 Active Appearance Model과 Pseudo Inverse Matching 방법을 사용하고, 20도 이상의 경우 Speeded Up Robust Features와 Iterative Closest Point를 이용하는 것이 정합의 오차를 줄일 수 있다.
특성 추출은dimensionality reduction technique로서 잡음을 제거하기 위해 사용되는 중요한 전처리 방식이다. 이러한 과정을 통해 데이터의 크기를 줄일 수 있으며 학습의 정확성 및 이해도를 높일 수 있다. Classification에 사용되는 다양한 특성 추출방식들이 존재하는 반면에 클러스터링에 적용될 수 있는 방식들은 양적으로도 많이 부족하며 존재하는 방식들도 대부분 사용되는 클러스터링 알고리즘 자체에 의존적인 실세계 어플리케이션에는 적용하기 부적합한 Wrapper 방식을 도입하고 있다. 본 논문에서는 클러스터링 알고리즘으로부터 독립적인 필터 솔루션(filter solution)을 제안하였다. 이 방식은 클러스터를 가진 데이터와 가지지 않고 있는 데이터 사이의 point-to-point 거리 히스토그램의 차이에 기반하고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.