• 제목/요약/키워드: Feature function

검색결과 1,289건 처리시간 0.034초

Cross-architecture Binary Function Similarity Detection based on Composite Feature Model

  • Xiaonan Li;Guimin Zhang;Qingbao Li;Ping Zhang;Zhifeng Chen;Jinjin Liu;Shudan Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권8호
    • /
    • pp.2101-2123
    • /
    • 2023
  • Recent studies have shown that the neural network-based binary code similarity detection technology performs well in vulnerability mining, plagiarism detection, and malicious code analysis. However, existing cross-architecture methods still suffer from insufficient feature characterization and low discrimination accuracy. To address these issues, this paper proposes a cross-architecture binary function similarity detection method based on composite feature model (SDCFM). Firstly, the binary function is converted into vector representation according to the proposed composite feature model, which is composed of instruction statistical features, control flow graph structural features, and application program interface calling behavioral features. Then, the composite features are embedded by the proposed hierarchical embedding network based on a graph neural network. In which, the block-level features and the function-level features are processed separately and finally fused into the embedding. In addition, to make the trained model more accurate and stable, our method utilizes the embeddings of predecessor nodes to modify the node embedding in the iterative updating process of the graph neural network. To assess the effectiveness of composite feature model, we contrast SDCFM with the state of art method on benchmark datasets. The experimental results show that SDCFM has good performance both on the area under the curve in the binary function similarity detection task and the vulnerable candidate function ranking in vulnerability search task.

PCA와 입자 군집 최적화 알고리즘을 이용한 얼굴이미지에서 특징선택에 관한 연구 (A Study on Feature Selection in Face Image Using Principal Component Analysis and Particle Swarm Optimization Algorithm)

  • 김웅기;오성권;김현기
    • 전기학회논문지
    • /
    • 제58권12호
    • /
    • pp.2511-2519
    • /
    • 2009
  • In this paper, we introduce the methodological system design via feature selection using Principal Component Analysis and Particle Swarm Optimization algorithms. The overall methodological system design comes from three kinds of modules such as preprocessing module, feature extraction module, and recognition module. First, Histogram equalization enhance the quality of image by exploiting contrast effect based on the normalized function generated from histogram distribution values of 2D face image. Secondly, PCA extracts feature vectors to be used for face recognition by using eigenvalues and eigenvectors obtained from covariance matrix. Finally the feature selection for face recognition among the entire feature vectors is considered by means of the Particle Swarm Optimization. The optimized Polynomial-based Radial Basis Function Neural Networks are used to evaluate the face recognition performance. This study shows that the proposed methodological system design is effective to the analysis of preferred face recognition.

시불변 학습계수와 이진 강화 함수를 가진 자기 조직화 형상지도 신경회로망의 동적특성 (The dynamics of self-organizing feature map with constant learning rate and binary reinforcement function)

  • 석진욱;조성원
    • 제어로봇시스템학회논문지
    • /
    • 제2권2호
    • /
    • pp.108-114
    • /
    • 1996
  • We present proofs of the stability and convergence of Self-organizing feature map (SOFM) neural network with time-invarient learning rate and binary reinforcement function. One of the major problems in Self-organizing feature map neural network concerns with learning rate-"Kalman Filter" gain in stochsatic control field which is monotone decreasing function and converges to 0 for satisfying minimum variance property. In this paper, we show that the stability and convergence of Self-organizing feature map neural network with time-invariant learning rate. The analysis of the proposed algorithm shows that the stability and convergence is guranteed with exponentially stable and weak convergence properties as well.s as well.

  • PDF

퍼지 매핑을 이용한 퍼지 패턴 분류기의 Feature Selection (Feature Selection of Fuzzy Pattern Classifier by using Fuzzy Mapping)

  • 노석범;김용수;안태천
    • 한국지능시스템학회논문지
    • /
    • 제24권6호
    • /
    • pp.646-650
    • /
    • 2014
  • 본 논문에서는 다차원 문제로 인하여 발생하는 패턴 분류 성능의 저하를 방지 하여 퍼지 패턴 분류기의 성능을 개선하기 위하여 다수의 Feature들 중에서 패턴 분류 성능 향상에 기여하는 Feature를 선택하기 위한 새로운 Feature Selection 방법을 제안 한다. 새로운 Feature Selection 방법은 각각의 Feature 들을 퍼지 클러스터링 기법을 이용하여 클러스터링 한 후 각 클러스터가 임의의 class에 속하는 정도를 계산하고 얻어진 값을 이용하여 해당 feature 가 fuzzy pattern classifier에 적용될 경우 패턴 분류 성능 개선 가능성을 평가한다. 평가된 성능 개선 가능성을 기반으로 이미 정해진 개수만큼의 Feature를 선택하는 Feature Selection을 수행한다. 본 논문에서는 제안된 방법의 성능을 평가, 비교하기 위하여 다수의 머신 러닝 데이터 집합에 적용한다.

멀티 프레임 기반 건물 인식에 필요한 특징점 분류 (Classification of Feature Points Required for Multi-Frame Based Building Recognition)

  • 박시영;안하은;이규철;유지상
    • 한국통신학회논문지
    • /
    • 제41권3호
    • /
    • pp.317-327
    • /
    • 2016
  • 영상에서 의미 있는 특징점(feature point)의 추출은 제안하는 기법의 성능과 직결되는 문제이다. 특히 나무나 사람 등에서의 가려짐 영역(occlusion region), 하늘과 산 등 객체가 아닌 배경에서 추출되는 특징점들은 의미없는 특징점으로 분류되어 정합과 인식 기법의 성능을 저하시키는 원인이 된다. 본 논문에서는 한 장 이상의 멀티 프레임을 이용하여 건물 인식에 필요한 특징점을 분류하여 인식과 정합단계에서 기존의 일반적인 건물 인식 기법의 성능을 향상시키기 위한 새로운 기법을 제안한다. 먼저 SIFT(scale invariant feature transform)를 통해 일차적으로 특징점을 추출한 후 잘못 정합 된 특징점은 제거한다. 가려짐 영역에서의 특징점 분류를 위해서는 RANSAC(random sample consensus)을 적용한다. 분류된 특징점들은 정합 기법을 통해 구하였기 때문에 하나의 특징점은 여러 개의 디스크립터가 존재하고 따라서 이를 통합하는 과정도 제안한다. 실험을 통해 제안하는 기법의 성능이 우수하다는 것을 보였다.

소실점 정보의 Loss 함수를 이용한 특징선 기반 SLAM (Line-Based SLAM Using Vanishing Point Measurements Loss Function)

  • 임현준;명현
    • 로봇학회논문지
    • /
    • 제18권3호
    • /
    • pp.330-336
    • /
    • 2023
  • In this paper, a novel line-based simultaneous localization and mapping (SLAM) using a loss function of vanishing point measurements is proposed. In general, the Huber norm is used as a loss function for point and line features in feature-based SLAM. The proposed loss function of vanishing point measurements is based on the unit sphere model. Because the point and line feature measurements define the reprojection error in the image plane as a residual, linear loss functions such as the Huber norm is used. However, the typical loss functions are not suitable for vanishing point measurements with unbounded problems. To tackle this problem, we propose a loss function for vanishing point measurements. The proposed loss function is based on unit sphere model. Finally, we prove the validity of the loss function for vanishing point through experiments on a public dataset.

성도 면적 함수를 이용한 음성 인식에 관한 연구 (A Study on Speech Recognition using Vocal Tract Area Function)

  • 송제혁;김동준
    • 대한의용생체공학회:의공학회지
    • /
    • 제16권3호
    • /
    • pp.345-352
    • /
    • 1995
  • The LPC cepstrum coefficients, which are an acoustic features of speech signal, have been widely used as the feature parameter for various speech recognition systems and showed good performance. The vocal tract area function is a kind of articulatory feature, which is related with the physiological mechanism of speech production. This paper proposes the vocal tract area function as an alternative feature parameter for speech recognition. The linear predictive analysis using Burg algorithm and the vector quantization are performed. Then, recognition experiments for 5 Korean vowels and 10 digits are executed using the conventional LPC cepstrum coefficients and the vocal tract area function. The recognitions using the area function showed the slightly better results than those using the conventional LPC cepstrum coefficients.

  • PDF

다차원 데이터 평가가 가능한 개선된 FSDD 연구 (An Improvement of FSDD for Evaluating Multi-Dimensional Data)

  • 오세종
    • 디지털융복합연구
    • /
    • 제15권1호
    • /
    • pp.247-253
    • /
    • 2017
  • 피처선택, 혹은 변수 선택은 피처의 수가 매우 많은 고차원 데이터에서 주어진 주제와 연관성이 높은 피처를 선별하는 과정으로서, 데이터의 차원수를 낮추어 군집분석이나 분류 분석 등을 용이하게 하는데 중요한 기법이다. 많은 수의 피처들 중에서 일부의 피처를 선별하기 위해서는 피처들을 평가하기 위한 도구가 필요하다. 현재까지 제안된 도구들은 대부분 확률이론이나 정보이론에 기초하여 만들어졌기 때문에 하나의 피처, 즉 1차원 데이터만을 평가할 수 있다. 그러나 피처들 간에는 상호작용이 있기 때문에 하나의 피처를 평가하기 보다는 여러 피처들의 집합, 즉 다차원 데이터를 평가할 수 있어야 효과적인 피처 선택이 가능하다. 본 연구에서는 확장된 거리 함수를 이용하여 1차원 데이터 평가용으로 제안된 FSDD 평가 함수를 다차원 데이터에 대한 평가가 가능하도록 개선하는 방법에 대해 제안하였다. 본 연구에서 제안한 접근법은 다른 1차원 데이터 평가함수에도 적용이 될 수 있을 것으로 기대된다.

Experimental Optimal Choice Of Initial Candidate Inliers Of The Feature Pairs With Well-Ordering Property For The Sample Consensus Method In The Stitching Of Drone-based Aerial Images

  • Shin, Byeong-Chun;Seo, Jeong-Kweon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권4호
    • /
    • pp.1648-1672
    • /
    • 2020
  • There are several types of image registration in the sense of stitching separated images that overlap each other. One of these is feature-based registration by a common feature descriptor. In this study, we generate a mosaic of images using feature-based registration for drone aerial images. As a feature descriptor, we apply the scale-invariant feature transform descriptor. In order to investigate the authenticity of the feature points and to have the mapping function, we employ the sample consensus method; we consider the sensed image's inherent characteristic such as the geometric congruence between the feature points of the images to propose a novel hypothesis estimation of the mapping function of the stitching via some optimally chosen initial candidate inliers in the sample consensus method. Based on the experimental results, we show the efficiency of the proposed method compared with benchmark methodologies of random sampling consensus method (RANSAC); the well-ordering property defined in the context and the extensive stitching examples have supported the utility. Moreover, the sample consensus scheme proposed in this study is uncomplicated and robust, and some fatal miss stitching by RANSAC is remarkably reduced in the measure of the pixel difference.

Discriminative Manifold Learning Network using Adversarial Examples for Image Classification

  • Zhang, Yuan;Shi, Biming
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.2099-2106
    • /
    • 2018
  • This study presents a novel approach of discriminative feature vectors based on manifold learning using nonlinear dimension reduction (DR) technique to improve loss function, and combine with the Adversarial examples to regularize the object function for image classification. The traditional convolutional neural networks (CNN) with many new regularization approach has been successfully used for image classification tasks, and it achieved good results, hence it costs a lot of Calculated spacing and timing. Significantly, distrinct from traditional CNN, we discriminate the feature vectors for objects without empirically-tuned parameter, these Discriminative features intend to remain the lower-dimensional relationship corresponding high-dimension manifold after projecting the image feature vectors from high-dimension to lower-dimension, and we optimize the constrains of the preserving local features based on manifold, which narrow the mapped feature information from the same class and push different class away. Using Adversarial examples, improved loss function with additional regularization term intends to boost the Robustness and generalization of neural network. experimental results indicate that the approach based on discriminative feature of manifold learning is not only valid, but also more efficient in image classification tasks. Furthermore, the proposed approach achieves competitive classification performances for three benchmark datasets : MNIST, CIFAR-10, SVHN.