• Title/Summary/Keyword: Feature extraction algorithm

Search Result 877, Processing Time 1.063 seconds

Automated Analyses of Ground-Penetrating Radar Images to Determine Spatial Distribution of Buried Cultural Heritage (매장 문화재 공간 분포 결정을 위한 지하투과레이더 영상 분석 자동화 기법 탐색)

  • Kwon, Moonhee;Kim, Seung-Sep
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.551-561
    • /
    • 2022
  • Geophysical exploration methods are very useful for generating high-resolution images of underground structures, and such methods can be applied to investigation of buried cultural properties and for determining their exact locations. In this study, image feature extraction and image segmentation methods were applied to automatically distinguish the structures of buried relics from the high-resolution ground-penetrating radar (GPR) images obtained at the center of Silla Kingdom, Gyeongju, South Korea. The major purpose for image feature extraction analyses is identifying the circular features from building remains and the linear features from ancient roads and fences. Feature extraction is implemented by applying the Canny edge detection and Hough transform algorithms. We applied the Hough transforms to the edge image resulted from the Canny algorithm in order to determine the locations the target features. However, the Hough transform requires different parameter settings for each survey sector. As for image segmentation, we applied the connected element labeling algorithm and object-based image analysis using Orfeo Toolbox (OTB) in QGIS. The connected components labeled image shows the signals associated with the target buried relics are effectively connected and labeled. However, we often find multiple labels are assigned to a single structure on the given GPR data. Object-based image analysis was conducted by using a Large-Scale Mean-Shift (LSMS) image segmentation. In this analysis, a vector layer containing pixel values for each segmented polygon was estimated first and then used to build a train-validation dataset by assigning the polygons to one class associated with the buried relics and another class for the background field. With the Random Forest Classifier, we find that the polygons on the LSMS image segmentation layer can be successfully classified into the polygons of the buried relics and those of the background. Thus, we propose that these automatic classification methods applied to the GPR images of buried cultural heritage in this study can be useful to obtain consistent analyses results for planning excavation processes.

Research on Classification of Sitting Posture with a IMU (하나의 IMU를 이용한 앉은 자세 분류 연구)

  • Kim, Yeon-Wook;Cho, Woo-Hyeong;Jeon, Yu-Yong;Lee, Sangmin
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.3
    • /
    • pp.261-270
    • /
    • 2017
  • Bad sitting postures are known to cause for a variety of diseases or physical deformation. However, it is not easy to fit right sitting posture for long periods of time. Therefore, methods of distinguishing and inducing good sitting posture have been constantly proposed. Proposed methods were image processing, using pressure sensor attached to the chair, and using the IMU (Internal Measurement Unit). The method of using IMU has advantages of simple hardware configuration and free of various constraints in measurement. In this paper, we researched on distinguishing sitting postures with a small amount of data using just one IMU. Feature extraction method was used to find data which contribution is the least for classification. Machine learning algorithms were used to find the best position to classify and we found best machine learning algorithm. Used feature extraction method was PCA(Principal Component Analysis). Used Machine learning models were five : SVM(Support Vector Machine), KNN(K Nearest Neighbor), K-means (K-means Algorithm) GMM (Gaussian Mixture Model), and HMM (Hidden Marcov Model). As a result of research, back neck is suitable position for classification because classification rate of it was highest in every model. It was confirmed that Yaw data which is one of the IMU data has the smallest contribution to classification rate using PCA and there was no changes in classification rate after removal it. SVM, KNN are suitable for classification because their classification rate are higher than the others.

Low Complexity Image Thresholding Based on Block Type Classification for Implementation of the Low Power Feature Extraction Algorithm (저전력 특징추출 알고리즘의 구현을 위한 블록 유형 분류 기반 낮은 복잡도를 갖는 영상 이진화)

  • Lee, Juseong;An, Ho-Myoung;Kim, Byungcheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.179-185
    • /
    • 2019
  • This paper proposes a block-type classification based image binarization for the implementation of the low-power feature extraction algorithm. The proposed method can be implemented with threshold value re-use technique approach when the image divided into $64{\times}64$ macro blocks size and calculating the threshold value for each block type only once. The algorithm is validated based on quantitative results that only a threshold value change rate of up to 9% occurs within the same image/block type. Existing algorithms should compute the threshold value for 64 blocks when the macro block is divided by $64{\times}64$ on the basis of $512{\times}512$ images, but all suggestions can be made only once for best cases where the same block type is printed, and for the remaining 63 blocks, the adaptive threshold calculation can be reduced by only performing a block type classification process. The threshold calculation operation is performed five times when all block types occur, and only the block type separation process can be performed for the remaining 59 blocks, so 93% adaptive threshold calculation operation can be reduced.

Feature-based Matching Algorithms for Registration between LiDAR Point Cloud Intensity Data Acquired from MMS and Image Data from UAV (MMS로부터 취득된 LiDAR 점군데이터의 반사강도 영상과 UAV 영상의 정합을 위한 특징점 기반 매칭 기법 연구)

  • Choi, Yoonjo;Farkoushi, Mohammad Gholami;Hong, Seunghwan;Sohn, Hong-Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.453-464
    • /
    • 2019
  • Recently, as the demand for 3D geospatial information increases, the importance of rapid and accurate data construction has increased. Although many studies have been conducted to register UAV (Unmanned Aerial Vehicle) imagery based on LiDAR (Light Detection and Ranging) data, which is capable of precise 3D data construction, studies using LiDAR data embedded in MMS (Mobile Mapping System) are insufficient. Therefore, this study compared and analyzed 9 matching algorithms based on feature points for registering reflectance image converted from LiDAR point cloud intensity data acquired from MMS with image data from UAV. Our results indicated that when the SIFT (Scale Invariant Feature Transform) algorithm was applied, it was able to stable secure a high matching accuracy, and it was confirmed that sufficient conjugate points were extracted even in various road environments. For the registration accuracy analysis, the SIFT algorithm was able to secure the accuracy at about 10 pixels except the case when the overlapping area is low and the same pattern is repeated. This is a reasonable result considering that the distortion of the UAV altitude is included at the time of UAV image capturing. Therefore, the results of this study are expected to be used as a basic research for 3D registration of LiDAR point cloud intensity data and UAV imagery.

The Study on Marker-less Tracking Algorithm Performance based on Mobile Augmented Reality (모바일 증강현실 기반의 마커리스 추적 알고리즘 성능 연구)

  • Yoon, Ji-Yean;Moon, Il-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.1032-1037
    • /
    • 2012
  • Augmented reality (AR) is augmented virtual information on the real world with real-time. And user can interact with information. In this paper, Marker-less tracking algorithm has been studied, for implement the augmented reality system on a mobile environment. In marker-less augmented reality, users do not need to attach the markers, and constrained the location. So, it's convenient to use. For marker-less tracking, I use the SURF algorithm based on feature point extraction in this paper. The SURF algorithm can be used on mobile devices because of the computational complexity is low. However, the SURF algorithm optimization work is not suitable for mobile devices. Therefore, in this paper, in order to the suitable tracking in mobile devices, the SURF algorithm was tested in a variety of environments. And ways to optimize has been studied.

Robust Detection of Body Areas Using an Adaboost Algorithm (에이다부스트 알고리즘을 이용한 인체 영역의 강인한 검출)

  • Jang, Seok-Woo;Byun, Siwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.403-409
    • /
    • 2016
  • Recently, harmful content (such as images and photos of nudes) has been widely distributed. Therefore, there have been various studies to detect and filter out such harmful image content. In this paper, we propose a new method using Haar-like features and an AdaBoost algorithm for robustly extracting navel areas in a color image. The suggested algorithm first detects the human nipples through color information, and obtains candidate navel areas with positional information from the extracted nipple areas. The method then selects real navel regions based on filtering using Haar-like features and an AdaBoost algorithm. Experimental results show that the suggested algorithm detects navel areas in color images 1.6 percent more robustly than an existing method. We expect that the suggested navel detection algorithm will be usefully utilized in many application areas related to 2D or 3D harmful content detection and filtering.

Malware Application Classification based on Feature Extraction and Machine Learning for Malicious Behavior Analysis in Android Platform (안드로이드 플랫폼에서 악성 행위 분석을 통한 특징 추출과 머신러닝 기반 악성 어플리케이션 분류)

  • Kim, Dong-Wook;Na, Kyung-Gi;Han, Myung-Mook;Kim, Mijoo;Go, Woong;Park, Jun Hyung
    • Journal of Internet Computing and Services
    • /
    • v.19 no.1
    • /
    • pp.27-35
    • /
    • 2018
  • This paper is a study to classify malicious applications in Android environment. And studying the threat and behavioral analysis of malicious Android applications. In addition, malicious apps classified by machine learning were performed as experiments. Android behavior analysis can use dynamic analysis tools. Through this tool, API Calls, Runtime Log, System Resource, and Network information for the application can be extracted. We redefined the properties extracted for machine learning and evaluated the results of machine learning classification by verifying between the overall features and the main features. The results show that key features have been improved by 1~4% over the full feature set. Especially, SVM classifier improved by 10%. From these results, we found that the application of the key features as a key feature was more effective in the performance of the classification algorithm than in the use of the overall features. It was also identified as important to select meaningful features from the data sets.

Study on Dimension Reduction algorithm for unsupervised clustering of the DMR's RF-fingerprinting features (무선단말기 RF-fingerprinting 특징의 비지도 클러스터링을 위한 차원축소 알고리즘 연구)

  • Young-Giu Jung;Hak-Chul Shin;Sun-Phil Nah
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.83-89
    • /
    • 2023
  • The clustering technique using RF fingerprint extracts the characteristic signature of the transmitters which are embedded in the transmission waveforms. The output of the RF-Fingerprint feature extraction algorithm for clustering identical DMR(Digital Mobile Radios) is a high-dimensional feature, typically consisting of 512 or more dimensions. While such high-dimensional features may be effective for the classifiers, they are not suitable to be used as inputs for the clustering algorithms. Therefore, this paper proposes a dimension reduction algorithm that effectively reduces the dimensionality of the multidimensional RF-Fingerprint features while maintaining the fingerprinting characteristics of the DMRs. Additionally, it proposes a clustering algorithm that can effectively cluster the reduced dimensions. The proposed clustering algorithm reduces the multi-dimensional RF-Fingerprint features using t-SNE, based on KL Divergence, and performs clustering using Density Peaks Clustering (DPC). The performance analysis of the DMR clustering algorithm uses a dataset of 3000 samples collected from 10 Motorola XiR and 10 Wintech N-Series DMRs. The results of the RF-Fingerprinting-based clustering algorithm showed the formation of 20 clusters, and all performance metrics including Homogeneity, Completeness, and V-measure, demonstrated a performance of 99.4%.

A Fast Scene Change Detection Algorithm using Direct Feature Extraction from MPEG Compressed Videos (MPEG 압축 비디오로부터 특징 정보의 직접 추출을 통한 바른 장면 전환 검출 알고리즘)

  • 김영민;이성환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.404-406
    • /
    • 1999
  • 비디오 데이터의 효율적인 저장, 관리를 위해서는 장면 전환 검출을 통한 비디오 분할 기술에 대한 연구가 필요하므로, 최근 들어 압축 비디오상의 특징 정보를 직접 추출하여 장면 전환 검출에 사용하는 방법에 대한 연구가 많이 이루어지고 있다. 본 논문에서는 MPEG 압축 비디오 상의 에지 정보를 복호화 과정을 거치지 않고 직접 추출하여 장면 전환 검출에 사용하는 새로운 방법을 제안하였다. 이산 여현 변환(DCT)된 블록내 AC 계수의 부호를 통해 에지의 모양을 알아내었으며, AC 계수간의 상관 관계를 통해 에지의 방향과 세기를 측정하여 프레임을 정합하는 방법을 사용하였다. 실험 결과 사용한 특징 정보가 명도나 색상 변환에 무관하여 잘못 검출하는 비율이 현저히 적었으며, 영상을 완전 복호화한 후 에지를 구하여 장면 전환 검출을 하는 방법에 비해 약 5-6배 속도가 빠름을 확인할 수 있었다.

  • PDF

Moving object Tracking Using U and FI

  • Song, Hag-hyun;Kwak, Yoon-shik;Kim, Yoon-ho;Ryu, Kwang-Ryol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.7
    • /
    • pp.1126-1132
    • /
    • 2002
  • In this paper, we propose a new scheme of motion tracking based on fuzzy inference (Fl) and wavelet transform (WT) from image sequences. First, we present a WT to segment a feature extraction of dynamic image . The coefficient matrix for 2-level DWT tent to be clustered around the location of Important features in the images, such as edge discontinuities, peaks, and corners. But these features are time varying owing to the environment conditions. Second, to reduce the spatio-temperal error, We develop a fuzzy inference algorithm. Some experiments are performed 0 testify the validity and applicability of the proposed system As a result, proposed method is relatively simple compared with the traditional space domain method. It is also well suited for motion tracking under the conditions of variation of illumination.