Geophysical exploration methods are very useful for generating high-resolution images of underground structures, and such methods can be applied to investigation of buried cultural properties and for determining their exact locations. In this study, image feature extraction and image segmentation methods were applied to automatically distinguish the structures of buried relics from the high-resolution ground-penetrating radar (GPR) images obtained at the center of Silla Kingdom, Gyeongju, South Korea. The major purpose for image feature extraction analyses is identifying the circular features from building remains and the linear features from ancient roads and fences. Feature extraction is implemented by applying the Canny edge detection and Hough transform algorithms. We applied the Hough transforms to the edge image resulted from the Canny algorithm in order to determine the locations the target features. However, the Hough transform requires different parameter settings for each survey sector. As for image segmentation, we applied the connected element labeling algorithm and object-based image analysis using Orfeo Toolbox (OTB) in QGIS. The connected components labeled image shows the signals associated with the target buried relics are effectively connected and labeled. However, we often find multiple labels are assigned to a single structure on the given GPR data. Object-based image analysis was conducted by using a Large-Scale Mean-Shift (LSMS) image segmentation. In this analysis, a vector layer containing pixel values for each segmented polygon was estimated first and then used to build a train-validation dataset by assigning the polygons to one class associated with the buried relics and another class for the background field. With the Random Forest Classifier, we find that the polygons on the LSMS image segmentation layer can be successfully classified into the polygons of the buried relics and those of the background. Thus, we propose that these automatic classification methods applied to the GPR images of buried cultural heritage in this study can be useful to obtain consistent analyses results for planning excavation processes.
Kim, Yeon-Wook;Cho, Woo-Hyeong;Jeon, Yu-Yong;Lee, Sangmin
Journal of rehabilitation welfare engineering & assistive technology
/
v.11
no.3
/
pp.261-270
/
2017
Bad sitting postures are known to cause for a variety of diseases or physical deformation. However, it is not easy to fit right sitting posture for long periods of time. Therefore, methods of distinguishing and inducing good sitting posture have been constantly proposed. Proposed methods were image processing, using pressure sensor attached to the chair, and using the IMU (Internal Measurement Unit). The method of using IMU has advantages of simple hardware configuration and free of various constraints in measurement. In this paper, we researched on distinguishing sitting postures with a small amount of data using just one IMU. Feature extraction method was used to find data which contribution is the least for classification. Machine learning algorithms were used to find the best position to classify and we found best machine learning algorithm. Used feature extraction method was PCA(Principal Component Analysis). Used Machine learning models were five : SVM(Support Vector Machine), KNN(K Nearest Neighbor), K-means (K-means Algorithm) GMM (Gaussian Mixture Model), and HMM (Hidden Marcov Model). As a result of research, back neck is suitable position for classification because classification rate of it was highest in every model. It was confirmed that Yaw data which is one of the IMU data has the smallest contribution to classification rate using PCA and there was no changes in classification rate after removal it. SVM, KNN are suitable for classification because their classification rate are higher than the others.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.12
no.3
/
pp.179-185
/
2019
This paper proposes a block-type classification based image binarization for the implementation of the low-power feature extraction algorithm. The proposed method can be implemented with threshold value re-use technique approach when the image divided into $64{\times}64$ macro blocks size and calculating the threshold value for each block type only once. The algorithm is validated based on quantitative results that only a threshold value change rate of up to 9% occurs within the same image/block type. Existing algorithms should compute the threshold value for 64 blocks when the macro block is divided by $64{\times}64$ on the basis of $512{\times}512$ images, but all suggestions can be made only once for best cases where the same block type is printed, and for the remaining 63 blocks, the adaptive threshold calculation can be reduced by only performing a block type classification process. The threshold calculation operation is performed five times when all block types occur, and only the block type separation process can be performed for the remaining 59 blocks, so 93% adaptive threshold calculation operation can be reduced.
Choi, Yoonjo;Farkoushi, Mohammad Gholami;Hong, Seunghwan;Sohn, Hong-Gyoo
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.37
no.6
/
pp.453-464
/
2019
Recently, as the demand for 3D geospatial information increases, the importance of rapid and accurate data construction has increased. Although many studies have been conducted to register UAV (Unmanned Aerial Vehicle) imagery based on LiDAR (Light Detection and Ranging) data, which is capable of precise 3D data construction, studies using LiDAR data embedded in MMS (Mobile Mapping System) are insufficient. Therefore, this study compared and analyzed 9 matching algorithms based on feature points for registering reflectance image converted from LiDAR point cloud intensity data acquired from MMS with image data from UAV. Our results indicated that when the SIFT (Scale Invariant Feature Transform) algorithm was applied, it was able to stable secure a high matching accuracy, and it was confirmed that sufficient conjugate points were extracted even in various road environments. For the registration accuracy analysis, the SIFT algorithm was able to secure the accuracy at about 10 pixels except the case when the overlapping area is low and the same pattern is repeated. This is a reasonable result considering that the distortion of the UAV altitude is included at the time of UAV image capturing. Therefore, the results of this study are expected to be used as a basic research for 3D registration of LiDAR point cloud intensity data and UAV imagery.
Augmented reality (AR) is augmented virtual information on the real world with real-time. And user can interact with information. In this paper, Marker-less tracking algorithm has been studied, for implement the augmented reality system on a mobile environment. In marker-less augmented reality, users do not need to attach the markers, and constrained the location. So, it's convenient to use. For marker-less tracking, I use the SURF algorithm based on feature point extraction in this paper. The SURF algorithm can be used on mobile devices because of the computational complexity is low. However, the SURF algorithm optimization work is not suitable for mobile devices. Therefore, in this paper, in order to the suitable tracking in mobile devices, the SURF algorithm was tested in a variety of environments. And ways to optimize has been studied.
Journal of the Korea Academia-Industrial cooperation Society
/
v.17
no.11
/
pp.403-409
/
2016
Recently, harmful content (such as images and photos of nudes) has been widely distributed. Therefore, there have been various studies to detect and filter out such harmful image content. In this paper, we propose a new method using Haar-like features and an AdaBoost algorithm for robustly extracting navel areas in a color image. The suggested algorithm first detects the human nipples through color information, and obtains candidate navel areas with positional information from the extracted nipple areas. The method then selects real navel regions based on filtering using Haar-like features and an AdaBoost algorithm. Experimental results show that the suggested algorithm detects navel areas in color images 1.6 percent more robustly than an existing method. We expect that the suggested navel detection algorithm will be usefully utilized in many application areas related to 2D or 3D harmful content detection and filtering.
Kim, Dong-Wook;Na, Kyung-Gi;Han, Myung-Mook;Kim, Mijoo;Go, Woong;Park, Jun Hyung
Journal of Internet Computing and Services
/
v.19
no.1
/
pp.27-35
/
2018
This paper is a study to classify malicious applications in Android environment. And studying the threat and behavioral analysis of malicious Android applications. In addition, malicious apps classified by machine learning were performed as experiments. Android behavior analysis can use dynamic analysis tools. Through this tool, API Calls, Runtime Log, System Resource, and Network information for the application can be extracted. We redefined the properties extracted for machine learning and evaluated the results of machine learning classification by verifying between the overall features and the main features. The results show that key features have been improved by 1~4% over the full feature set. Especially, SVM classifier improved by 10%. From these results, we found that the application of the key features as a key feature was more effective in the performance of the classification algorithm than in the use of the overall features. It was also identified as important to select meaningful features from the data sets.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.23
no.3
/
pp.83-89
/
2023
The clustering technique using RF fingerprint extracts the characteristic signature of the transmitters which are embedded in the transmission waveforms. The output of the RF-Fingerprint feature extraction algorithm for clustering identical DMR(Digital Mobile Radios) is a high-dimensional feature, typically consisting of 512 or more dimensions. While such high-dimensional features may be effective for the classifiers, they are not suitable to be used as inputs for the clustering algorithms. Therefore, this paper proposes a dimension reduction algorithm that effectively reduces the dimensionality of the multidimensional RF-Fingerprint features while maintaining the fingerprinting characteristics of the DMRs. Additionally, it proposes a clustering algorithm that can effectively cluster the reduced dimensions. The proposed clustering algorithm reduces the multi-dimensional RF-Fingerprint features using t-SNE, based on KL Divergence, and performs clustering using Density Peaks Clustering (DPC). The performance analysis of the DMR clustering algorithm uses a dataset of 3000 samples collected from 10 Motorola XiR and 10 Wintech N-Series DMRs. The results of the RF-Fingerprinting-based clustering algorithm showed the formation of 20 clusters, and all performance metrics including Homogeneity, Completeness, and V-measure, demonstrated a performance of 99.4%.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.404-406
/
1999
비디오 데이터의 효율적인 저장, 관리를 위해서는 장면 전환 검출을 통한 비디오 분할 기술에 대한 연구가 필요하므로, 최근 들어 압축 비디오상의 특징 정보를 직접 추출하여 장면 전환 검출에 사용하는 방법에 대한 연구가 많이 이루어지고 있다. 본 논문에서는 MPEG 압축 비디오 상의 에지 정보를 복호화 과정을 거치지 않고 직접 추출하여 장면 전환 검출에 사용하는 새로운 방법을 제안하였다. 이산 여현 변환(DCT)된 블록내 AC 계수의 부호를 통해 에지의 모양을 알아내었으며, AC 계수간의 상관 관계를 통해 에지의 방향과 세기를 측정하여 프레임을 정합하는 방법을 사용하였다. 실험 결과 사용한 특징 정보가 명도나 색상 변환에 무관하여 잘못 검출하는 비율이 현저히 적었으며, 영상을 완전 복호화한 후 에지를 구하여 장면 전환 검출을 하는 방법에 비해 약 5-6배 속도가 빠름을 확인할 수 있었다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.6
no.7
/
pp.1126-1132
/
2002
In this paper, we propose a new scheme of motion tracking based on fuzzy inference (Fl) and wavelet transform (WT) from image sequences. First, we present a WT to segment a feature extraction of dynamic image . The coefficient matrix for 2-level DWT tent to be clustered around the location of Important features in the images, such as edge discontinuities, peaks, and corners. But these features are time varying owing to the environment conditions. Second, to reduce the spatio-temperal error, We develop a fuzzy inference algorithm. Some experiments are performed 0 testify the validity and applicability of the proposed system As a result, proposed method is relatively simple compared with the traditional space domain method. It is also well suited for motion tracking under the conditions of variation of illumination.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.