DOI QR코드

DOI QR Code

Robust Detection of Body Areas Using an Adaboost Algorithm

에이다부스트 알고리즘을 이용한 인체 영역의 강인한 검출

  • 장석우 (안양대학교 디지털미디어학과) ;
  • 변시우 (안양대학교 디지털미디어학과)
  • Received : 2016.09.22
  • Accepted : 2016.11.10
  • Published : 2016.11.30

Abstract

Recently, harmful content (such as images and photos of nudes) has been widely distributed. Therefore, there have been various studies to detect and filter out such harmful image content. In this paper, we propose a new method using Haar-like features and an AdaBoost algorithm for robustly extracting navel areas in a color image. The suggested algorithm first detects the human nipples through color information, and obtains candidate navel areas with positional information from the extracted nipple areas. The method then selects real navel regions based on filtering using Haar-like features and an AdaBoost algorithm. Experimental results show that the suggested algorithm detects navel areas in color images 1.6 percent more robustly than an existing method. We expect that the suggested navel detection algorithm will be usefully utilized in many application areas related to 2D or 3D harmful content detection and filtering.

최근 들어, 나체 사진이나 그림과 같은 유해한 영상 콘텐츠가 쉽게 유통 및 보급되고 있는 실정이어서 이런 유해 영상 콘텐츠를 효과적으로 검출하고 필터링하기 위한 연구 방법들이 지속적으로 소개되고 있다. 따라서 본 논문에서는 입력되는 칼라 영상으로부터 영상의 유해성을 나타내는 요소인 사람의 배꼽 영역을 하르-라이크(Haar-like) 특징과 에이다부스트(Adaboost) 알고리즘을 이용하여 강인하게 검출하는 새로운 접근 방법을 제안한다. 본 논문에서 제안된 방법에서는 먼저 입력 영상으로부터 색상 정보를 이용하여 사람의 유두 영역을 검출하고, 검출된 유두 영역과의 위치 정보를 사용하여 배꼽의 후보 영역을 검출한다. 그런 다음, 하르-라이크 특징과 에이다부스트 알고리즘을 이용한 필터링을 통해 실제 배꼽 영역들만을 검출한다. 실험 결과에서는 제안된 방법이 입력되는 칼라 영상으로부터 배꼽 영역을 기존의 방법보다 1.6% 더 정확하게 추출한다는 것을 보여준다. 본 논문에서 제안된 배꼽 영역 검출 알고리즘은 2 차원이나 3 차원의 유해 콘텐츠 검출 및 필터링과 관련된 여러 가지 응용 분야에서 매우 효과적으로 이용될 것으로 기대된다.

Keywords

References

  1. A. Yousafzai, V. Chang, A. Gani, and R. M. Noor, "Multimedia Augmented m-Learning: Issues, Trends and Open Challenges," International Journal of Information Management, vol. 36, no. 5, pp. 784-792, Oct. 2016. DOI: http://dx.doi.org/10.1016/j.ijinfomgt.2016.05.010
  2. X. L. Liu, W. Hu, C. Luo, and F. Wu, "Compressive Image Broadcasting in MIMO Systems with Receiver Antenna Heterogeneity," Signal Processing: Image Communication, vol. 29, no. 3, pp. 361-374, Mar. 2014. DOI: http://dx.doi.org/10.1016/j.image.2014.01.005
  3. K. J. Kim, J. S. Kim, K.J. Lim, “Analysis of Research for Smartphone Use by Infants,” Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, Vol. 6, No. 6, pp. 423-432, June 2016. DOI: http://dx.doi.org/10.14257/AJMAHS.2016.06.15
  4. Sae-Ron Han, Jae-Su Lee, Young-Ki Hong, Gook-Hwan Kim, Sung-Ki Kim, Sang-Cheol Kim, “Development of Virtual Ambient Weather Measurement System for the Smart Greenhous,” Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, Vol. 5, No. 5, pp. 471-479, Oct. 2015. DOI: http://dx.doi.org/10.14257/AJMAHS.2015.10.50
  5. W. W. Huh, “a Study on Personas techniques used about smartphones of the New Silver Generation,” Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, Vol. 6, No. 9, pp. 1-9, Sep. 2016. DOI: http://dx.doi.org/10.14257/AJMAHS.2016.09.01
  6. Y.-J. Park, S.-H. Weon, J.-K. Sung, H.-I. Choi and G.-Y. Kim, "Identification of Adult Images through Detection of the Breast Contour and Nipple," Information-An International Interdisciplinary Journal, vol. 15, no. 7, pp. 2643-2652, July 2012.
  7. Dong-hyeok Lee, Nam-je Park, “Smart Grid Privacy Protection Measures According to the Change of IT Paradigm,” Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, Vol. 6, No. 3, pp. 81-90, Mar. 2016. DOI: http://dx.doi.org/10.14257/AJMAHS.2016.03.30
  8. J. W. Hong, S. B. Park, K. Y. Ohk, “The Moderating Effects of Innovativeness and Absorptive Capacity Between Personal Information Protection Attitude and Mobile Banking Acceptance,” Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, Vol. 6, No. 6, pp. 31-40, June 2016. DOI: http://dx.doi.org/10.14257/AJMAHS.2016.06.31
  9. H. S. Lee, Personal chracteristics and Information privacy Concerns, Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, Vol. 6, No. 9, pp. 267-276, Sep. 2016. DOI: http://dx.doi.org/10.14257/AJMAHS.2016.09.46
  10. S.-W. Jang, Y.-J. Park, G.-Y. Kim, H.-I. Choi, and M.-C. Hong, "An Adult Image Identification System Based on Robust Skin Segmentation," Journal of Imaging Science and Technology, vol. 55. no. 2, pp. 020508-1-10, Mar. 2011. DOI: https://doi.org/10.2352/J.ImagingSci.Technol.2011.55.2.020508
  11. J.-S. Yoon, G.-Y. Kim, and H.-I. Choi, "Development of an Adult Image Classifier Using Skin Color," Journal of the Korea Contents Association, vol. 9, no. 4, pp. 1-11, 2009. DOI: http://dx.doi.org/10.5392/JKCA.2009.9.4.001
  12. J.-Y Park, S.-S. Park, Y.-G. Shin, and D.-S. Jang, "A Novel System for Detecting Adult Images on the Internet," KSII Transactions on Internet and Information Systems, Vvol. 4, no. 5, pp. 910-924, Oct. 2010. DOI: http://dx.doi.org/10.3837/tiis.2010.10.012
  13. J.-L. Shih, C.-H. Lee, and C.-S. Yang, "An Adult Images Identification System Employing Image Retrieval Technique," Pattern Recognition Letters, vol. 28, no. 16, pp. 2367-2374, Dec. 2007. DOI: http://dx.doi.org/10.1016/j.patrec.2007.08.002
  14. S.-W. Jang and G.-Y. Kim, "Learning-Based Detection of Harmful Data in Mobile Devices," Mobile Information Systems, Hindawi, Article ID: 3919134, pp. 1-8, Apr. 2016. DOI: http://dx.doi.org/10.1155/2016/3919134
  15. K.-M. Lee, "Component-based Face Detection and Verification," Pattern Recognition Letters, vol. 29, pp. 200-214, 2008. DOI: http://dx.doi.org/10.1016/j.patrec.2007.09.013
  16. C. Gao, P. Li, Y. Zhang, J. Liu, L. Wang, "People Counting Based on Head Detection Combining Adaboost and CNN in Crowded Surveillance Environment," Neurocomputing, vol. 208, pp. 108-116, Oct. 2016. DOI: http://dx.doi.org/10.1016/j.neucom.2016.01.097
  17. A. Mohamed, A. Issam, B. Mohamed, and B. Abdellatif, "Real-Time Detection of Vehicles Using the Haar-like Features and Artificial Neuron Networks," Procedia Computer Science, vol. 73, pp. 24-31, 2015. DOI: http://dx.doi.org/10.1016/j.procs.2015.12.045
  18. C. Chai and Y. Wang, "Face Detection Based on Extended Haar-like Features," In Proc. of the Second International Conference on Mechanical and Electronics Engineering (ICMEE), vol. 1, pp. 442-445, Aug. 2010. DOI: http://dx.doi.org/10.1109/icmee.2010.5558512