• Title/Summary/Keyword: Feature extraction algorithm

Search Result 877, Processing Time 0.026 seconds

Random Forest Based Abnormal ECG Dichotomization using Linear and Nonlinear Feature Extraction (선형-비선형 특징추출에 의한 비정상 심전도 신호의 랜덤포레스트 기반 분류)

  • Kim, Hye-Jin;Kim, Byeong-Nam;Jang, Won-Seuk;Yoo, Sun-K.
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.61-67
    • /
    • 2016
  • This paper presented a method for random forest based the arrhythmia classification using both heart rate (HR) and heart rate variability (HRV) features. We analyzed the MIT-BIH arrhythmia database which contains half-hour ECG recorded from 48 subjects. This study included not only the linear features but also non-linear features for the improvement of classification performance. We classified abnormal ECG using mean_NN (mean of heart rate), SD1/SD2 (geometrical feature of poincare HRV plot), SE (spectral entropy), pNN100 (percentage of a heart rate longer than 100 ms) affecting accurate classification among combined of linear and nonlinear features. We compared our proposed method with Neural Networks to evaluate the accuracy of the algorithm. When we used the features extracted from the HRV as an input variable for classifier, random forest used only the most contributed variable for classification unlike the neural networks. The characteristics of random forest enable the dimensionality reduction of the input variables, increase a efficiency of classifier and can be obtained faster, 11.1% higher accuracy than the neural networks.

Signal Processing Technology for Rotating Machinery Fault Signal Diagnosis (회전기계 결함신호 진단을 위한 신호처리 기술 개발)

  • Ahn, Byung-Hyun;Kim, Yong-Hwi;Lee, Jong-Myeong;Lee, Jeong-Hoon;Choi, Byeong-Keun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.555-561
    • /
    • 2014
  • Acoustic Emission technique is widely applied to develop the early fault detection system, and the problem about a signal processing method for AE signal is mainly focused on. In the signal processing method, envelope analysis is a useful method to evaluate the bearing problems and wavelet transform is a powerful method to detect faults occurred on rotating machinery. However, exact method for AE signal is not developed yet for the rotating machinery diagnosis. Therefore, in this paper two methods which are processed by Hilbert transform and DET for feature extraction. In addition, we evaluate the classification performance with varying the parameter from 2 to 15 for feature selection DET, 0.01 to 1.0 for the RBF kernel function of SVR, and the proposed algorithm achieved 94 % classification of averaged accuracy with the parameter of the RBF 0.08, 12 feature selection.

Wine Label Recognition System using Image Similarity (이미지 유사도를 이용한 와인라벨 인식 시스템)

  • Jung, Jeong-Mun;Yang, Hyung-Jeong;Kim, Soo-Hyung;Lee, Guee-Sang;Kim, Sun-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.5
    • /
    • pp.125-137
    • /
    • 2011
  • Recently the research on the system using images taken from camera phones as input is actively conducted. This paper proposed a system that shows wine pictures which are similar to the input wine label in order. For the calculation of the similarity of images, the representative color of each cell of the image, the recognized text color, background color and distribution of feature points are used as the features. In order to calculate the difference of the colors, RGB is converted into CIE-Lab and the feature points are extracted by using Harris Corner Detection Algorithm. The weights of representative color of each cell of image, text color and background color are applied. The image similarity is calculated by normalizing the difference of color similarity and distribution of feature points. After calculating the similarity between the input image and the images in the database, the images in Database are shown in the descent order of the similarity so that the effort of users to search for similar wine labels again from the searched result is reduced.

Optimal Band Selection Techniques for Hyperspectral Image Pixel Classification using Pooling Operations & PSNR (초분광 이미지 픽셀 분류를 위한 풀링 연산과 PSNR을 이용한 최적 밴드 선택 기법)

  • Chang, Duhyeuk;Jung, Byeonghyeon;Heo, Junyoung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.141-147
    • /
    • 2021
  • In this paper, in order to improve the utilization of hyperspectral large-capacity data feature information by reducing complex computations by dimension reduction of neural network inputs in embedded systems, the band selection algorithm is applied in each subset. Among feature extraction and feature selection techniques, the feature selection aim to improve the optimal number of bands suitable for datasets, regardless of wavelength range, and the time and performance, more than others algorithms. Through this experiment, although the time required was reduced by 1/3 to 1/9 times compared to the others band selection technique, meaningful results were improved by more than 4% in terms of performance through the K-neighbor classifier. Although it is difficult to utilize real-time hyperspectral data analysis now, it has confirmed the possibility of improvement.

FE-CBIRS Using Color Distribution for Cut Retrieval in IPTV (IPTV에서 컷 검색을 위한 색 분포정보를 이용한 FE-CBIRS)

  • Koo, Gun-Seo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.91-97
    • /
    • 2009
  • This paper proposes novel FE-CBIRS that finds best position of a cut to be retrieved based on color feature distribution in digital contents of IPTV. Conventional CBIRS have used a method that utilizes both color and shape information together to classify images, as well as a method that utilizes both feature information of the entire region and feature information of a partial region that is extracted by segmentation for searching. Also, in the algorithm, average, standard deviation and skewness values are used in case of color features for each hue, saturation and intensity values respectively. Furthermore, in case of using partial regions, only a few major colors are used and in case of shape features, the invariant moment is mainly used on the extracted partial regions. Due to these reasons, some problems have been issued in CBIRS in processing time and accuracy so far. Therefore, in order to tackle these problems, this paper proposes the FE-CBIRS that makes searching speed faster by classifying and indexing the extracted color information by each class and by using several cuts that are restricted in range as comparative images.

Cyber Threat Intelligence Traffic Through Black Widow Optimisation by Applying RNN-BiLSTM Recognition Model

  • Kanti Singh Sangher;Archana Singh;Hari Mohan Pandey
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.99-109
    • /
    • 2023
  • The darknet is frequently referred to as the hub of illicit online activity. In order to keep track of real-time applications and activities taking place on Darknet, traffic on that network must be analysed. It is without a doubt important to recognise network traffic tied to an unused Internet address in order to spot and investigate malicious online activity. Any observed network traffic is the result of mis-configuration from faked source addresses and another methods that monitor the unused space address because there are no genuine devices or hosts in an unused address block. Digital systems can now detect and identify darknet activity on their own thanks to recent advances in artificial intelligence. In this paper, offer a generalised method for deep learning-based detection and classification of darknet traffic. Furthermore, analyse a cutting-edge complicated dataset that contains a lot of information about darknet traffic. Next, examine various feature selection strategies to choose a best attribute for detecting and classifying darknet traffic. For the purpose of identifying threats using network properties acquired from darknet traffic, devised a hybrid deep learning (DL) approach that combines Recurrent Neural Network (RNN) and Bidirectional LSTM (BiLSTM). This probing technique can tell malicious traffic from legitimate traffic. The results show that the suggested strategy works better than the existing ways by producing the highest level of accuracy for categorising darknet traffic using the Black widow optimization algorithm as a feature selection approach and RNN-BiLSTM as a recognition model.

A Gaussian Mixture Model Based Surface Electromyogram Pattern Classification Algorithm for Estimation of Wrist Motions (손목 움직임 추정을 위한 Gaussian Mixture Model 기반 표면 근전도 패턴 분류 알고리즘)

  • Jeong, Eui-Chul;Yu, Song-Hyun;Lee, Sang-Min;Song, Young-Rok
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.65-71
    • /
    • 2012
  • In this paper, the Gaussian Mixture Model(GMM) which is very robust modeling for pattern classification is proposed to classify wrist motions using surface electromyograms(EMG). EMG is widely used to recognize wrist motions such as up, down, left, right, rest, and is obtained from two electrodes placed on the flexor carpi ulnaris and extensor carpi ulnaris of 15 subjects under no strain condition during wrist motions. Also, EMG-based feature is derived from extracted EMG signals in time domain for fast processing. The estimated features based in difference absolute mean value(DAMV) are used for motion classification through GMM. The performance of our approach is evaluated by recognition rates and it is found that the proposed GMM-based method yields better results than conventional schemes including k-Nearest Neighbor(k-NN), Quadratic Discriminant Analysis(QDA) and Linear Discriminant Analysis(LDA).

Lane Detection Based on Inverse Perspective Transformation and Kalman Filter

  • Huang, Yingping;Li, Yangwei;Hu, Xing;Ci, Wenyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.643-661
    • /
    • 2018
  • This paper proposes a novel algorithm for lane detection based on inverse perspective transformation and Kalman filter. A simple inverse perspective transformation method is presented to remove perspective effects and generate a top-view image. This method does not need to obtain the internal and external parameters of the camera. The Gaussian kernel function is used to convolute the image to highlight the lane lines, and then an iterative threshold method is used to segment the image. A searching method is applied in the top-view image obtained from the inverse perspective transformation to determine the lane points and their positions. Combining with feature voting mechanism, the detected lane points are fitted as a straight line. Kalman filter is then applied to optimize and track the lane lines and improve the detection robustness. The experimental results show that the proposed method works well in various road conditions and meet the real-time requirements.

Design of a Content-based Multimedia Information Retrieval System (내용 기반 멀티미디어 정보 검색 시스템의 설계)

  • 박민식;유기형
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.8
    • /
    • pp.1117-1122
    • /
    • 2001
  • Recently, issues on the internet searching of image information through various multimedia databases have drawn an tremendous attention and several researches on image information retrieval methods are on progress. By incorporating wavelet transform and correlation matrixes, we propose a novel and highly efficient feature vector extraction algorithm that has an capability of a robust similarity matching. The simulation results have yielded a faster and highly accurate candidate image retrieval performance in comparison to those of the conventional algorithms. Such an improved performance can be obtained because the used feature vectors were compressed to 256:1 while the correlation matrixes are incorporated to provide a fuel information for the better matching.

  • PDF

Contour and Feature Parameter Extraction for Moving Object Tracking in Traffic Scenes (도로영상에서 움직이는 물체 추적을 위한 윤곽선 및 특징 파라미터 추출)

  • Lee, Chul-Hun;Seol Sung-Wook;Joo Jae-Heum;Nam Ki-Gon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.1
    • /
    • pp.11-20
    • /
    • 2000
  • This paper presents the method of extracting the contour and shape parameters for moving object tracking in traffic scenes. The contour is extracted by applying difference image method in reduction image and the features are extracted from original image to grow the accuracy of tracking. We used features such as circle distribution, center moment, and maximum and minimum ratio. Data association problem is solved by these features. Kalman filters are used for moving object tracking on real time. The simulation results indicate that the proposed algorithm appears to generate feature vectors good enough for multiple vehicle tracking.

  • PDF