• Title/Summary/Keyword: Feature extraction Template matching

Search Result 22, Processing Time 0.025 seconds

Face Feature Extraction Method ThroughStereo Image's Matching Value (스테레오 영상의 정합값을 통한 얼굴특징 추출 방법)

  • Kim, Sang-Myung;Park, Chang-Han;Namkung, Jae-Chan
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.4
    • /
    • pp.461-472
    • /
    • 2005
  • In this paper, we propose face feature extraction algorithm through stereo image's matching value. The proposed algorithm detected face region by change the RGB color space of skin color information to the YCbCr color space. Applying eye-template from extracted face region geometrical feature vector of feature about distance and lean, nose and mouth between eye extracted. And, Proposed method could do feature of eyes, nose and mouth through stereo image's matching as well as 2D feature information extract. In the experiment, the proposed algorithm shows the consistency rate of 73% in distance within about 1m and the consistency rate of 52%in distance since about 1m.

  • PDF

Divided SOFM training and feature extraction using template matching classifier (템플레이트 매칭 분류를 이용한 SOFM의 분할 학습과 특징 추출)

  • 서석배;하성욱;강대성
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.705-708
    • /
    • 1998
  • In this paper, a new algorithm is proposed that the template matching is used to devide SOFM (self-organizig feature map) for fast learning and to extract features for considering input data types. In order to verify the superoprity of the proposed algorithm, applied to the recognition of handwritten numerals. Templates of handwritten numerals are created by a line of external-contact.

  • PDF

Eye and Mouth Images Based Facial Expressions Recognition Using PCA and Template Matching (PCA와 템플릿 정합을 사용한 눈 및 입 영상 기반 얼굴 표정 인식)

  • Woo, Hyo-Jeong;Lee, Seul-Gi;Kim, Dong-Woo;Ryu, Sung-Pil;Ahn, Jae-Hyeong
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.7-15
    • /
    • 2014
  • This paper proposed a recognition algorithm of human facial expressions using the PCA and the template matching. Firstly, face image is acquired using the Haar-like feature mask from an input image. The face image is divided into two images. One is the upper image including eye and eyebrow. The other is the lower image including mouth and jaw. The extraction of facial components, such as eye and mouth, begins getting eye image and mouth image. Then an eigenface is produced by the PCA training process with learning images. An eigeneye and an eigenmouth are produced from the eigenface. The eye image is obtained by the template matching the upper image with the eigeneye, and the mouth image is obtained by the template matching the lower image with the eigenmouth. The face recognition uses geometrical properties of the eye and mouth. The simulation results show that the proposed method has superior extraction ratio rather than previous results; the extraction ratio of mouth image is particularly reached to 99%. The face recognition system using the proposed method shows that recognition ratio is greater than 80% about three facial expressions, which are fright, being angered, happiness.

Road Centerline Tracking From High Resolution Satellite Imagery By Least Squares Templates Matching

  • Park, Seung-Ran;Kim, Tae-Jung;Jeong, Soo;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.34-39
    • /
    • 2002
  • Road information is very important for topographic mapping, transportation application, urban planning and other related application fields. Therefore, automatic detection of road networks from spatial imagery, such as aerial photos and satellite imagery can play a central role in road information acquisition. In this paper, we use least squares correlation matching alone for road center tracking and show that it works. We assumed that (bright) road centerlines would be visible in the image. We further assumed that within a same road segment, there would be only small differences in brightness values. This algorithm works by defining a template around a user-given input point, which shall lie on a road centerline, and then by matching the template against the image along the orientation of the road under consideration. Once matching succeeds, new match proceeds by shifting a matched target window further along road orientation at the target window. By repeating the process above, we obtain a series of points, which lie on a road centerline successively. A 1m resolution IKONOS images over Seoul and Daejeon were used for tests. The results showed that this algorithm could extract road centerlines in any orientation and help in fast and exact he ad-up digitization/vectorization of cartographic images.

  • PDF

Automatic Disk Disease Recognition based on Feature Vector in T-L Spine Magnetic Resonance Image (척추 자기 공명 영상에서 특징 벡터에 기반 한 디스크 질환의 자동 인식)

  • 홍재성;이성기
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.233-242
    • /
    • 1998
  • In anatomical aspects, magnetic resonance image offers more accurate information than other medical images such as X ray ultrasonic and CT images. This paper introduces a method that recognizes disk diseases from spine MR images. In this method, image enhancement, image segmentation and feature extraction for sagittal plane and axial plane images are performed to separate the disk region. And then template matching method is used to extract disease region for axial plane imges. Finally, disease feature vectors are integrated and disease discrimination processes are performed. Experimental results show that the proposed method discriminates between normal and diseased disk with a considerable recognition ratio.

  • PDF

The Verification of Image Merging for Lumber Scanning System (제재목 화상입력시스템의 화상병합 성능 검증)

  • Kim, Byung Nam;Kim, Kwang Mo;Shim, Kug-Bo;Lee, Hyoung Woo;Shim, Sang-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.556-565
    • /
    • 2009
  • Automated visual grading system of lumber needs correct input image. In order to create a correct image of domestic red pine lumber 3.6 m long feeding on a conveyer, part images were captured using area sensor and template matching algorithm was applied to merge part images. Two kinds of template matching algorithms and six kinds of template sizes were adopted in this operation. Feature extracted method appeared to have more excellent image merging performance than fixed template method. Error length was attributed to a decline of similarity related by difference of partial brightness on a part image, specific pattern and template size. The mismatch part was repetitively generated at the long grain. The best size of template for image merging was $100{\times}100$ pixels. In a further study, assignment of exact template size, preprocessing of image merging for reduction of brightness difference will be needed to improve image merging.

Facial Feature Extraction using Genetic Algorithm from Original Image (배경영상에서 유전자 알고리즘을 이용한 얼굴의 각 부위 추출)

  • 이형우;이상진;박석일;민홍기;홍승홍
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.214-217
    • /
    • 2000
  • Many researches have been performed for human recognition and coding schemes recently. For this situation, we propose an automatic facial feature extraction algorithm. There are two main steps: the face region evaluation from original background image such as office, and the facial feature extraction from the evaluated face region. In the face evaluation, Genetic Algorithm is adopted to search face region in background easily such as office and household in the first step, and Template Matching Method is used to extract the facial feature in the second step. We can extract facial feature more fast and exact by using over the proposed Algorithm.

  • PDF

Wavelet-based Feature Extraction Algorithm for an Iris Recognition System

  • Panganiban, Ayra;Linsangan, Noel;Caluyo, Felicito
    • Journal of Information Processing Systems
    • /
    • v.7 no.3
    • /
    • pp.425-434
    • /
    • 2011
  • The success of iris recognition depends mainly on two factors: image acquisition and an iris recognition algorithm. In this study, we present a system that considers both factors and focuses on the latter. The proposed algorithm aims to find out the most efficient wavelet family and its coefficients for encoding the iris template of the experiment samples. The algorithm implemented in software performs segmentation, normalization, feature encoding, data storage, and matching. By using the Haar and Biorthogonal wavelet families at various levels feature encoding is performed by decomposing the normalized iris image. The vertical coefficient is encoded into the iris template and is stored in the database. The performance of the system is evaluated by using the number of degrees of freedom, False Reject Rate (FRR), False Accept Rate (FAR), and Equal Error Rate (EER) and the metrics show that the proposed algorithm can be employed for an iris recognition system.

Fingerprint-Based Personal Authentication Using Directional Filter Bank (방향성 필터 뱅크를 이용한 지문 기반 개인 인증)

  • 박철현;오상근;김범수;원종운;송영철;이재준;박길흠
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.4
    • /
    • pp.256-265
    • /
    • 2003
  • To improve reliability and practicality, a fingerprint-based biometric system needs to be robust to rotations of an input fingerprint and the processing speed should be fast. Accordingly, this paper presents a new filterbank-based fingerprint feature extraction and matching method that is robust to diverse rotations and reasonably fast. The proposed method fast extracts fingerprint features using a directional filter bank, which effectively decomposes an image into several subband outputs Since matching is also performed rapidly based on the Euclidean distance between the corresponding feature vectors, the overall processing speed is so fast. To make the system robust to rotations, the proposed method generates a set of feature vectors considering various rotations of an input fingerprint and then matches these feature vectors with the enrolled single template feature vector. Experimental results demonstrated the high speed of the proposed method in feature extraction and matching, along with a comparable verification accuracy to that of other leading techniques.

Realtime Face Recognition by Analysis of Feature Information (특징정보 분석을 통한 실시간 얼굴인식)

  • Chung, Jae-Mo;Bae, Hyun;Kim, Sung-Shin
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.299-302
    • /
    • 2001
  • The statistical analysis of the feature extraction and the neural networks are proposed to recognize a human face. In the preprocessing step, the normalized skin color map with Gaussian functions is employed to extract the region of face candidate. The feature information in the region of the face candidate is used to detect the face region. In the recognition step, as a tested, the 120 images of 10 persons are trained by the backpropagation algorithm. The images of each person are obtained from the various direction, pose, and facial expression. Input variables of the neural networks are the geometrical feature information and the feature information that comes from the eigenface spaces. The simulation results of$.$10 persons show that the proposed method yields high recognition rates.

  • PDF