• 제목/요약/키워드: Feature clustering

검색결과 449건 처리시간 0.025초

모듈라 신경망을 이용한 자동차 번호판 문자인식 (Character Recognition of Vehicle Number Plate using Modular Neural Network)

  • 박창석;김병만;서병훈;이광호
    • 한국지능시스템학회논문지
    • /
    • 제13권4호
    • /
    • pp.409-415
    • /
    • 2003
  • Recently, the modular learning are very popular and receive much attention for pattern classification. The modular learning method based on the "divide and conquer" strategy can not only solve the complex problems, but also reach a better result than a single classifier′s on the learning quality and speed. In the neural network area, some researches that take the modular learning approach also have been made to improve classification performance. In this paper, we propose a simple modular neural network for characters recognition of vehicle number plate and evaluate its performance on the clustering methods of feature vectors used in constructing subnetworks. We implement two clustering method, one is grouping similar feature vectors by K-means clustering algorithm, the other grouping unsimilar feature vectors by our proposed algorithm. The experiment result shows that our algorithm achieves much better performance.

자기조직화 신경망의 정렬된 연결강도를 이용한 클러스터링 알고리즘 (A Clustering Algorithm Using the Ordered Weight of Self-Organizing Feature Maps)

  • 이종섭;강맹규
    • 한국경영과학회지
    • /
    • 제31권3호
    • /
    • pp.41-51
    • /
    • 2006
  • Clustering is to group similar objects into clusters. Until now there are a lot of approaches using Self-Organizing feature Maps (SOFMS) But they have problems with a small output-layer nodes and initial weight. For example, one of them is a one-dimension map of c output-layer nodes, if they want to make c clusters. This approach has problems to classify elaboratively. This Paper suggests one-dimensional output-layer nodes in SOFMs. The number of output-layer nodes is more than those of clusters intended to find and the order of output-layer nodes is ascending in the sum of the output-layer node's weight. We un find input data in SOFMs output node and classify input data in output nodes using Euclidean distance. The proposed algorithm was tested on well-known IRIS data and TSPLIB. The results of this computational study demonstrate the superiority of the proposed algorithm.

Land Cover Clustering of NDVI-drived Phenological Features

  • Kim, Dong-Keun;Suh, Myoung-Seok;Park, Kyoung-Yoon
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1998년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.201-206
    • /
    • 1998
  • In this paper, we have considered the method for clustering land cover types over the East Asia from AVHRR data. The feature vectors such that maximum NDVI, amplitude of NDVI, mean NDVI, and NDVI threshold are extracted from the 10-day composite by maximum value composite(MVC) for reducing the effect of cloud contaninations. To find the land cover clusters given by the feature vectors, we are adapted the self-organizing feature map(SOFM) clustering which is the mapping of an input vector space of n-dimensions into a one - or two-dimensional grid of output layer. The approach is to find first the clusters by the first layer SOFM and then merge several clusters of the first layer to a large cluster by the second layer SOFM. In experiments, we were used the 8-km AVHRR data for two years(1992-1993) over the East Asia.

  • PDF

다차원 데이터에 대한 심층 군집 네트워크의 성능향상 방법 (Performance Improvement of Deep Clustering Networks for Multi Dimensional Data)

  • 이현진
    • 한국멀티미디어학회논문지
    • /
    • 제21권8호
    • /
    • pp.952-959
    • /
    • 2018
  • Clustering is one of the most fundamental algorithms in machine learning. The performance of clustering is affected by the distribution of data, and when there are more data or more dimensions, the performance is degraded. For this reason, we use a stacked auto encoder, one of the deep learning algorithms, to reduce the dimension of data which generate a feature vector that best represents the input data. We use k-means, which is a famous algorithm, as a clustering. Sine the feature vector which reduced dimensions are also multi dimensional, we use the Euclidean distance as well as the cosine similarity to increase the performance which calculating the similarity between the center of the cluster and the data as a vector. A deep clustering networks combining a stacked auto encoder and k-means re-trains the networks when the k-means result changes. When re-training the networks, the loss function of the stacked auto encoder and the loss function of the k-means are combined to improve the performance and the stability of the network. Experiments of benchmark image ad document dataset empirically validated the power of the proposed algorithm.

A Hybrid Recommendation System based on Fuzzy C-Means Clustering and Supervised Learning

  • Duan, Li;Wang, Weiping;Han, Baijing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권7호
    • /
    • pp.2399-2413
    • /
    • 2021
  • A recommendation system is an information filter tool, which uses the ratings and reviews of users to generate a personalized recommendation service for users. However, the cold-start problem of users and items is still a major research hotspot on service recommendations. To address this challenge, this paper proposes a high-efficient hybrid recommendation system based on Fuzzy C-Means (FCM) clustering and supervised learning models. The proposed recommendation method includes two aspects: on the one hand, FCM clustering technique has been applied to the item-based collaborative filtering framework to solve the cold start problem; on the other hand, the content information is integrated into the collaborative filtering. The algorithm constructs the user and item membership degree feature vector, and adopts the data representation form of the scoring matrix to the supervised learning algorithm, as well as by combining the subjective membership degree feature vector and the objective membership degree feature vector in a linear combination, the prediction accuracy is significantly improved on the public datasets with different sparsity. The efficiency of the proposed system is illustrated by conducting several experiments on MovieLens dataset.

Sparse NMF에 의한 클러스터링 (Clustering Effects in Sparse NMF(Non-negative Matrix Factorization))

  • 오상훈
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2008년도 춘계 종합학술대회 논문집
    • /
    • pp.92-95
    • /
    • 2008
  • 입력에서 특징을 추출하는 유용한 방법으로 NMF(Non-nagetive Matrix Factorization)이 제안되었다. NMF를 적용하면 고차원의 데이터가 저차원의 특징에 기반한 형태로 변형이 된다. 이 경우 클러스터링 효과도 같이 나타나는데, 최근에 Sparse NMF가 이러한 효과를 더 잘 보인다고 알려졌다. 이 논문에서는 숫자 영상 신호에 대하여 NMF와 Sparse NMF를 적용시켜 이러한 클러스터링 효과를 비교하여 보았다.

  • PDF

Online nonparametric Bayesian analysis of parsimonious Gaussian mixture models and scenes clustering

  • Zhou, Ri-Gui;Wang, Wei
    • ETRI Journal
    • /
    • 제43권1호
    • /
    • pp.74-81
    • /
    • 2021
  • The mixture model is a very powerful and flexible tool in clustering analysis. Based on the Dirichlet process and parsimonious Gaussian distribution, we propose a new nonparametric mixture framework for solving challenging clustering problems. Meanwhile, the inference of the model depends on the efficient online variational Bayesian approach, which enhances the information exchange between the whole and the part to a certain extent and applies to scalable datasets. The experiments on the scene database indicate that the novel clustering framework, when combined with a convolutional neural network for feature extraction, has meaningful advantages over other models.

The extension of the largest generalized-eigenvalue based distance metric Dij1) in arbitrary feature spaces to classify composite data points

  • Daoud, Mosaab
    • Genomics & Informatics
    • /
    • 제17권4호
    • /
    • pp.39.1-39.20
    • /
    • 2019
  • Analyzing patterns in data points embedded in linear and non-linear feature spaces is considered as one of the common research problems among different research areas, for example: data mining, machine learning, pattern recognition, and multivariate analysis. In this paper, data points are heterogeneous sets of biosequences (composite data points). A composite data point is a set of ordinary data points (e.g., set of feature vectors). We theoretically extend the derivation of the largest generalized eigenvalue-based distance metric Dij1) in any linear and non-linear feature spaces. We prove that Dij1) is a metric under any linear and non-linear feature transformation function. We show the sufficiency and efficiency of using the decision rule $\bar{{\delta}}_{{\Xi}i}$(i.e., mean of Dij1)) in classification of heterogeneous sets of biosequences compared with the decision rules min𝚵iand median𝚵i. We analyze the impact of linear and non-linear transformation functions on classifying/clustering collections of heterogeneous sets of biosequences. The impact of the length of a sequence in a heterogeneous sequence-set generated by simulation on the classification and clustering results in linear and non-linear feature spaces is empirically shown in this paper. We propose a new concept: the limiting dispersion map of the existing clusters in heterogeneous sets of biosequences embedded in linear and nonlinear feature spaces, which is based on the limiting distribution of nucleotide compositions estimated from real data sets. Finally, the empirical conclusions and the scientific evidences are deduced from the experiments to support the theoretical side stated in this paper.

EXTRACTING INSIGHTS OF CLASSIFICATION FOR TURING PATTERN WITH FEATURE ENGINEERING

  • OH, SEOYOUNG;LEE, SEUNGGYU
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제24권3호
    • /
    • pp.321-330
    • /
    • 2020
  • Data classification and clustering is one of the most common applications of the machine learning. In this paper, we aim to provide the insight of the classification for Turing pattern image, which has high nonlinearity, with feature engineering using the machine learning without a multi-layered algorithm. For a given image data X whose fixel values are defined in [-1, 1], X - X3 and ∇X would be more meaningful feature than X to represent the interface and bulk region for a complex pattern image data. Therefore, we use X - X3 and ∇X in the neural network and clustering algorithm to classification. The results validate the feasibility of the proposed approach.

Gabor 웨이브렛과 FCM 군집화 알고리즘에 기반한 동적 연결모형에 의한 얼굴표정에서 특징점 추출 (Feature-Point Extraction by Dynamic Linking Model bas Wavelets and Fuzzy C-Means Clustering Algorithm)

  • 신영숙
    • 인지과학
    • /
    • 제14권1호
    • /
    • pp.11-16
    • /
    • 2003
  • 본 논문은 Gabor 웨이브렛 변환을 이용하여 무표정을 포함한 표정영상에서 얼굴의 주요 요소들의 경계선을 추출한 후, FCM 군집화 알고리즘을 적용하여 무표정 영상에서 저차원의 대표적인 특징점을 추출한다. 무표정 영상의 특징점들은 표정영상의 특징점들을 추출하기 위한 템플릿으로 사용되어지며, 표정영상의 특징점 추출은 무표정 영상의 특징점과 동적 연결모형을 이용하여 개략적인 정합과 정밀한 정합 과정의 두단계로 이루어진다. 본 논문에서는 Gabor 웨이브렛과 FCM 군집화 알고리즘을 기반으로 동적 연결모형을 이용하여 표정영상에서 특징점들을 자동으로 추출할 수 있음을 제시한다. 본 연구결과는 자동 특징추출을 이용한 차원모형기반 얼굴 표정인식[1]에서 얼굴표정의 특징점을 자동으로 추출하는 데 적용되었다.

  • PDF