• Title/Summary/Keyword: Feature Weighting Methods

Search Result 33, Processing Time 0.024 seconds

An Empirical Study on Improving the Performance of Text Categorization Considering the Relationships between Feature Selection Criteria and Weighting Methods (자질 선정 기준과 가중치 할당 방식간의 관계를 고려한 문서 자동분류의 개선에 대한 연구)

  • Lee Jae-Yun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.39 no.2
    • /
    • pp.123-146
    • /
    • 2005
  • This study aims to find consistent strategies for feature selection and feature weighting methods, which can improve the effectiveness and efficiency of kNN text classifier. Feature selection criteria and feature weighting methods are as important factor as classification algorithms to achieve good performance of text categorization systems. Most of the former studies chose conflicting strategies for feature selection criteria and weighting methods. In this study, the performance of several feature selection criteria are measured considering the storage space for inverted index records and the classification time. The classification experiments in this study are conducted to examine the performance of IDF as feature selection criteria and the performance of conventional feature selection criteria, e.g. mutual information, as feature weighting methods. The results of these experiments suggest that using those measures which prefer low-frequency features as feature selection criterion and also as feature weighting method. we can increase the classification speed up to three or five times without loosing classification accuracy.

A Dynamic feature Weighting Method for Case-based Reasoning (사례기반 추론을 위한 동적 속성 가중치 부여 방법)

  • 이재식;전용준
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.1
    • /
    • pp.47-61
    • /
    • 2001
  • Lazy loaming methods including CBR have relative advantages in comparison with eager loaming methods such as artificial neural networks and decision trees. However, they are very sensitive to irrelevant features. In other words, when there are irrelevant features, larry learning methods have difficulty in comparing cases. Therefore, their performance can be degraded significantly. To overcome this disadvantage, feature weighting methods for lazy loaming methods have been studied. Most of the existing researches, however, were focused on global feature weighting. In this research, we propose a new local feature weighting method, which we shall call CBDFW. CBDFW stores classification performance of randomly generated feature weight vectors. Then, given a new query case, CBDFW retrieves the successful feature weight vectors and designs a feature weight vector fur the query case. In the test on credit evaluation domain, CBDFW showed better classification accuracy when compared to the results of previous researches.

  • PDF

Optimal k-Nearest Neighborhood Classifier Using Genetic Algorithm (유전알고리즘을 이용한 최적 k-최근접이웃 분류기)

  • Park, Chong-Sun;Huh, Kyun
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.1
    • /
    • pp.17-27
    • /
    • 2010
  • Feature selection and feature weighting are useful techniques for improving the classification accuracy of k-Nearest Neighbor (k-NN) classifier. The main propose of feature selection and feature weighting is to reduce the number of features, by eliminating irrelevant and redundant features, while simultaneously maintaining or enhancing classification accuracy. In this paper, a novel hybrid approach is proposed for simultaneous feature selection, feature weighting and choice of k in k-NN classifier based on Genetic Algorithm. The results have indicated that the proposed algorithm is quite comparable with and superior to existing classifiers with or without feature selection and feature weighting capability.

An Information-theoretic Approach for Value-Based Weighting in Naive Bayesian Learning (나이브 베이시안 학습에서 정보이론 기반의 속성값 가중치 계산방법)

  • Lee, Chang-Hwan
    • Journal of KIISE:Databases
    • /
    • v.37 no.6
    • /
    • pp.285-291
    • /
    • 2010
  • In this paper, we propose a new paradigm of weighting methods for naive Bayesian learning. We propose more fine-grained weighting methods, called value weighting method, in the context of naive Bayesian learning. While the current weighting methods assign a weight to an attribute, we assign a weight to an attribute value. We develop new methods, using Kullback-Leibler function, for both value weighting and feature weighting in the context of naive Bayesian. The performance of the proposed methods has been compared with the attribute weighting method and general naive bayesian. The proposed method shows better performance in most of the cases.

Pattern Recognition System Combining KNN rules and New Feature Weighting algorithm (KNN 규칙과 새로운 특징 가중치 알고리즘을 결합한 패턴 인식 시스템)

  • Lee Hee-Sung;Kim Euntai;Kim Dongyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.4 s.304
    • /
    • pp.43-50
    • /
    • 2005
  • This paper proposes a new pattern recognition system combining the new adaptive feature weighting based on the genetic algorithm and the modified KNN(K Nearest-Neighbor) rules. The new feature weighting proposed herein avoids the overfitting and finds the Proper feature weighting value by determining the middle value of weights using GA. New GA operators are introduced to obtain the high performance of the system. Moreover, a class dependent feature weighting strategy is employed. Whilst the classical methods use the same feature space for all classes, the Proposed method uses a different feature space for each class. The KNN rule is modified to estimate the class of test pattern using adaptive feature space. Experiments were performed with the unconstrained handwritten numeral database of Concordia University in Canada to show the performance of the proposed method.

Document Summarization using Pseudo Relevance Feedback and Term Weighting (의사연관피드백과 용어 가중치에 의한 문서요약)

  • Kim, Chul-Won;Park, Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.533-540
    • /
    • 2012
  • In this paper, we propose a document summarization method using the pseudo relevance feedback and the term weighting based on semantic features. The proposed method can minimize the user intervention to use the pseudo relevance feedback. It also can improve the quality of document summaries because the inherent semantic of the sentence set are well reflected by term weighting derived from semantic feature. In addition, it uses the semantic feature of term weighting and the expanded query to reduce the semantic gap between the user's requirement and the result of proposed method. The experimental results demonstrate that the proposed method achieves better performant than other methods without term weighting.

Noise Rabust Speaker Verification Using Sub-Band Weighting (서브밴드 가중치를 이용한 잡음에 강인한 화자검증)

  • Kim, Sung-Tak;Ji, Mi-Kyong;Kim, Hoi-Rin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.279-284
    • /
    • 2009
  • Speaker verification determines whether the claimed speaker is accepted based on the score of the test utterance. In recent years, methods based on Gaussian mixture models and universal background model have been the dominant approaches for text-independent speaker verification. These speaker verification systems based on these methods provide very good performance under laboratory conditions. However, in real situations, the performance of speaker verification system is degraded dramatically. For overcoming this performance degradation, the feature recombination method was proposed, but this method had a drawback that whole sub-band feature vectors are used to compute the likelihood scores. To deal with this drawback, a modified feature recombination method which can use each sub-band likelihood score independently was proposed in our previous research. In this paper, we propose a sub-band weighting method based on sub-band signal-to-noise ratio which is combined with previously proposed modified feature recombination. This proposed method reduces errors by 28% compared with the conventional feature recombination method.

Development of a Clustering Model for Automatic Knowledge Classification (지식 분류의 자동화를 위한 클러스터링 모형 연구)

  • 정영미;이재윤
    • Journal of the Korean Society for information Management
    • /
    • v.18 no.2
    • /
    • pp.203-230
    • /
    • 2001
  • The purpose of this study is to develop a document clustering model for automatic classification of knowledge. Two test collections of newspaper article texts and journal article abstracts are built for the clustering experiment. Various feature reduction criteria as well as term weighting methods are applied to the term sets of the test collections, and cosine and Jaccard coefficients are used as similarity measures. The performances of complete linkage and K-means clustering algorithms are compared using different feature selection methods and various term weights. It was found that complete linkage clustering outperforms K-means algorithm and feature reduction up to almost 10% of the total feature sets does not lower the performance of document clustering to any significant extent.

  • PDF

Gradient Descent Approach for Value-Based Weighting (점진적 하강 방법을 이용한 속성값 기반의 가중치 계산방법)

  • Lee, Chang-Hwan;Bae, Joo-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.381-388
    • /
    • 2010
  • Naive Bayesian learning has been widely used in many data mining applications, and it performs surprisingly well on many applications. However, due to the assumption that all attributes are equally important in naive Bayesian learning, the posterior probabilities estimated by naive Bayesian are sometimes poor. In this paper, we propose more fine-grained weighting methods, called value weighting, in the context of naive Bayesian learning. While the current weighting methods assign a weight to each attribute, we assign a weight to each attribute value. We investigate how the proposed value weighting effects the performance of naive Bayesian learning. We develop new methods, using gradient descent method, for both value weighting and feature weighting in the context of naive Bayesian. The performance of the proposed methods has been compared with the attribute weighting method and general Naive bayesian, and the value weighting method showed better in most cases.

A Method for Short Text Classification using SNS Feature Information based on Markov Logic Networks (SNS 특징정보를 활용한 마르코프 논리 네트워크 기반의 단문 텍스트 분류 방법)

  • Lee, Eunji;Kim, Pankoo
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.7
    • /
    • pp.1065-1072
    • /
    • 2017
  • As smart devices and social network services (SNSs) become increasingly pervasive, individuals produce large amounts of data in real time. Accordingly, studies on unstructured data analysis are actively being conducted to solve the resultant problem of information overload and to facilitate effective data processing. Many such studies are conducted for filtering inappropriate information. In this paper, a feature-weighting method considering SNS-message features is proposed for the classification of short text messages generated on SNSs, using Markov logic networks for category inference. The performance of the proposed method is verified through a comparison with an existing frequency-based classification methods.