References
- Wikipedia, http://en.wikipedia.org/wiki/Information_overload (accessed Mar., 07, 2017).
- M. Nam, E.. Lee, and and J. Shin, “A Method for User Sentiment Classification using Instagram Hashtags,” Journal of Korea Multimedia Society, Vol. 18, No. 11, pp. 1391-1399, 2015. https://doi.org/10.9717/kmms.2015.18.11.1391
- B. Ko, D. Choi, C. Choi, J. Choi, and P. Kim, "Data Classification through Specified Building n-gram," Proceedings of the International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, pp. 171-176, 2012.
- T.M. Mitchell, Machine Learning, McGraw-Hill Science/Engineering/Math, 1997. New York.
- B. Ko, K. Oh, and P. Kim, “A Research for Web Documents Genre Classification Using STW,” Journal of Information Technology and Architecture, Vol. 9, No. 4, pp. 413-422, 2012.
- Wikipedia, http://en.wikipedia.org/wiki/Tf%E2%80%93idf (accessed Mar., 07, 2017).
- Wikipedia, http://en.wikipedia.org/wiki/Mutual_information (accessed Mar., 24, 2017).
- C. Han, S. Park, and S. Lee, “A Document Classification System Using Modified ECCD and Category Weight for each Document,” Korea Information Processing Society, Vol. 19B, No. 4, pp. 237-242, 2012.
- M. Richardson and P. Domingos, “Markov logic networks,” Journal Machine Learning, Vol. 62, No. 1-2, pp. 107-136, 2006. https://doi.org/10.1007/s10994-006-5833-1
- S. Riedel and M.R. Ivan, "Collective Semantic Role Labelling with Markov Logic," Proceedings of the international Conference on Computational Natural Language Learning, pp. 193-197, 2008.
- C. Choi, J. Choi, E. Lee. I. You, and P. Kim, "Probabilistic Spatio-temporal Inference for Motion Event Understanding," Neurocomputing, Vol. 122, pp. 24-32, 2013. https://doi.org/10.1016/j.neucom.2012.12.058
- P. Oliveira, Probabilistic Reasoning in the Semantic Web using Markov Logic, Master's Thesis of University of Coimbra, 2009.
- P. Domingos and D. Lowd, Markov Logic: An Interface Layer for Artificial Intelligence, Morgan and Claypool Publishers, San Francisco, California, 2009.
- G. Song, Y. Ye, X. Du, X. Huang, and S. Bie, “Short Text Classification : A Survey,” Journal of Multimedia, Vol. 9, No. 5, pp. 635-643, 2014.
- L. Meng, R. Huang, and J. Gu, "A Review of Semantic Similarity Measures in WordNet," International Journal of Hybrid Information Technology, Vol. 6, No. 1 pp. 1-12, 2013.
- B. Liu, W. Hsu, and Y. Ma, "Integrating Classification and Association Rule Mining," Proceedings of Knowledge Discovery and Data Mining, pp. 80-86, 1998.
- B. Siram, D. Fuhry, E. Demir, H. Ferhatosmanoglu, and M. Demirbas, "Short Text Classification in Twitter to Improve Information Filtering," Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 841-842, 2010.
- M. Tare, I. Gohokar, J. Sable, D. Paratwar, and R. Wajgi, “Multi-Class Tweet Categorization using Map Reduce Paradigm,” International Journal of Computer Trends and Technology, Vol. 9, No. 2, pp. 78-81, 2014. https://doi.org/10.14445/22312803/IJCTT-V9P117
- I. Dilrukshi and K. Zoysa, “A Feature Selection Method for Twitter News Classification,” International Journal of Machine Learning and Computing, Vol. 4, No. 4, pp. 365-370, 2014. https://doi.org/10.7763/IJMLC.2014.V4.438
- J. Wang, G. Cong, W. Zhao, and X. Li, "Mining User Intents in Twitter : Semi-Supervised Approach to Inferring Intent Categories for Tweets," Proceeding of 29th Association for the Advancement of Artificial intelligence Conference on Artificial Intelligence, pp. 339-345, 2015.
- Y. Chun, “A SNS Message Type Classification System using Language Independent Features and Dependent Features,” International Journal of Software Engineering and Its Applications, Vol. 9, No. 7, pp. 151-158, 2015. https://doi.org/10.14257/ijseia.2015.9.7.16