• Title/Summary/Keyword: Feature Point Extraction

Search Result 268, Processing Time 0.033 seconds

A Novel Technique for Detection of Repacked Android Application Using Constant Key Point Selection Based Hashing and Limited Binary Pattern Texture Feature Extraction

  • MA Rahim Khan;Manoj Kumar Jain
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.141-149
    • /
    • 2023
  • Repacked mobile apps constitute about 78% of all malware of Android, and it greatly affects the technical ecosystem of Android. Although many methods exist for repacked app detection, most of them suffer from performance issues. In this manuscript, a novel method using the Constant Key Point Selection and Limited Binary Pattern (CKPS: LBP) Feature extraction-based Hashing is proposed for the identification of repacked android applications through the visual similarity, which is a notable feature of repacked applications. The results from the experiment prove that the proposed method can effectively detect the apps that are similar visually even that are even under the double fold content manipulations. From the experimental analysis, it proved that the proposed CKPS: LBP method has a better efficiency of detecting 1354 similar applications from a repository of 95124 applications and also the computational time was 0.91 seconds within which a user could get the decision of whether the app repacked. The overall efficiency of the proposed algorithm is 41% greater than the average of other methods, and the time complexity is found to have been reduced by 31%. The collision probability of the Hashes was 41% better than the average value of the other state of the art methods.

Object Feature Extraction Using Double Rearrangement of the Corner Region

  • Lee, Ji-Min;An, Young-Eun
    • Journal of Integrative Natural Science
    • /
    • v.12 no.4
    • /
    • pp.122-126
    • /
    • 2019
  • In this paper, we propose a simple and efficient retrieval technique using the feature value of the corner region, which is one of the shape information attributes of images. The proposed algorithm extracts the edges and corner points of the image and rearranges the feature values of the corner regions doubly, and then measures the similarity with the image in the database using the correlation of these feature values as the feature vector. The proposed algorithm is confirmed to be more robust to rotation and size change than the conventional image retrieval method using the corner point.

A note on the distance distribution paradigm for Mosaab-metric to process segmented genomes of influenza virus

  • Daoud, Mosaab
    • Genomics & Informatics
    • /
    • v.18 no.1
    • /
    • pp.7.1-7.7
    • /
    • 2020
  • In this paper, we present few technical notes about the distance distribution paradigm for Mosaab-metric using 1, 2, and 3 grams feature extraction techniques to analyze composite data points in high dimensional feature spaces. This technical analysis will help the specialist in bioinformatics and biotechnology to deeply explore the biodiversity of influenza virus genome as a composite data point. Various technical examples are presented in this paper, in addition, the integrated statistical learning pipeline to process segmented genomes of influenza virus is illustrated as sequential-parallel computational pipeline.

An Efficient Feature Point Extraction and Comparison Method through Distorted Region Correction in 360-degree Realistic Contents

  • Park, Byeong-Chan;Kim, Jin-Sung;Won, Yu-Hyeon;Kim, Young-Mo;Kim, Seok-Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.93-100
    • /
    • 2019
  • One of critical issues in dealing with 360-degree realistic contents is the performance degradation in searching and recognition process since they support up to 4K UHD quality and have all image angles including the front, back, left, right, top, and bottom parts of a screen. To solve this problem, in this paper, we propose an efficient search and comparison method for 360-degree realistic contents. The proposed method first corrects the distortion at the less distorted regions such as front, left and right parts of the image excluding severely distorted regions such as upper and lower parts, and then it extracts feature points at the corrected region and selects the representative images through sequence classification. When the query image is inputted, the search results are provided through feature points comparison. The experimental results of the proposed method shows that it can solve the problem of performance deterioration when 360-degree realistic contents are recognized comparing with traditional 2D contents.

Image Retrieval using Local Color Histogram and Shape Feature (지역별 색상 분포 히스토그램과 모양 특징을 이용한 영상 검색)

  • 정길선;김성만;이양원
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.50-54
    • /
    • 1999
  • This paper is proposed to image retrieval system using color and shape feature. Color feature used to four maximum value feature among the maximum value extracted from local color distribution histogram. The preprocessing of shape feature consist of edge extraction and weight central point extraction and angular sampling. The sum of distance from weight central point to contour and variation and max/min used to shape feature. The similarity is estimated compare feature of query image with the feature of images in database and the candidate of image is retrieved in order of similarity. We evaluate the effectiveness of shape feature and color feature in experiment used to two hundred of the closed image. The Recall and the Precision is each 0.72 and 0.53 in the result of average experiment. So the proposed method is presented useful method.

  • PDF

Improved Gradient Direction Assisted Linking Algorithm for Linear Feature Extraction in High Resolution Satellite Images, an Iterative Dynamic Programming Approach

  • Yang, Kai;Liew, Soo Chin;Lee, Ken Yoong;Kwoh, Leong Keong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.408-410
    • /
    • 2003
  • In this paper, an improved gradient direction assisted linking algorithm is proposed. This algorithm begins with initial seeds satisfying some local criteria. Then it will search along the direction provided by the initial point. A window will be generated in the gradient direction of the current point. Instead of the conventional method which only considers the value of the local salient structure, an improved mathematical model is proposed to describe the desired linear features. This model not only considers the value of the salient structure but also the direction of it. Furthermore, the linking problem under this model can be efficiently solved by dynamic programming method. This algorithm is tested for linear features detection in IKONOS images. The result demonstrates this algorithm is quite promising.

  • PDF

Method for Road Vanishing Point Detection Using DNN and Hog Feature (DNN과 HoG Feature를 이용한 도로 소실점 검출 방법)

  • Yoon, Dae-Eun;Choi, Hyung-Il
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.1
    • /
    • pp.125-131
    • /
    • 2019
  • A vanishing point is a point on an image to which parallel lines projected from a real space gather. A vanishing point in a road space provides important spatial information. It is possible to improve the position of an extracted lane or generate a depth map image using a vanishing point in the road space. In this paper, we propose a method of detecting vanishing points on images taken from a vehicle's point of view using Deep Neural Network (DNN) and Histogram of Oriented Gradient (HoG). The proposed algorithm is divided into a HoG feature extraction step, in which the edge direction is extracted by dividing an image into blocks, a DNN learning step, and a test step. In the learning stage, learning is performed using 2,300 road images taken from a vehicle's point of views. In the test phase, the efficiency of the proposed algorithm using the Normalized Euclidean Distance (NormDist) method is measured.

Fast Stitching Algorithm by using Feature Tracking (특징점 추적을 통한 다수 영상의 고속 스티칭 기법)

  • Park, Siyoung;Kim, Jongho;Yoo, Jisang
    • Journal of Broadcast Engineering
    • /
    • v.20 no.5
    • /
    • pp.728-737
    • /
    • 2015
  • Stitching algorithm obtain a descriptor of the feature points extracted from multiple images, and create a single image through the matching process between the each of the feature points. In this paper, a feature extraction and matching techniques for the creation of a high-speed panorama using video input is proposed. Features from Accelerated Segment Test(FAST) is used for the feature extraction at high speed. A new feature point matching process, different from the conventional method is proposed. In the matching process, by tracking region containing the feature point through the Mean shift vector required for matching is obtained. Obtained vector is used to match the extracted feature points. In order to remove the outlier, the RANdom Sample Consensus(RANSAC) method is used. By obtaining a homography transformation matrix of the two input images, a single panoramic image is generated. Through experimental results, we show that the proposed algorithm improve of speed panoramic image generation compared to than the existing method.

Comparative Study on Feature Extraction Schemes for Feature-based Structural Displacement Measurement (특징점 추출 기법에 따른 구조물 동적 변위 측정 성능에 관한 연구)

  • Junho Gong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.74-82
    • /
    • 2024
  • In this study, feature point detection and displacement measurement performance depending on feature extraction algorithms were compared and analyzed according to environmental changes and target types in the feature point-based displacement measurement algorithm. A three-story frame structure was designed for performance evaluation, and the displacement response of the structure was digitized into FHD (1920×1080) resolution. For performance analysis, the initial measurement distance was set to 10m, and increased up to 40m with an increment of 10m. During the experiments, illuminance was fixed to 450lux or 120lux. The artificial and natural targets mounted on the structure were set as regions of interest and used for feature point detection. Various feature detection algorithms were implemented for performance comparisons. As a result of the feature point detection performance analysis, the Shi-Tomasi corner and KAZE algorithm were found that they were robust to the target type, illuminance change, and increase in measurement distance. The displacement measurement accuracy using those two algorithms was also the highest. However, when using natural targets, the displacement measurement accuracy is lower than that of artificial targets. This indicated the limitation in extracting feature points as the resolution of the natural target decreased as the measurement distance increased.

Ridge Feature Extraction of Fingerprint Using Sequential Labeling (순차적 레이블링을 이용한 지문 융선 특징 검출)

  • 오재윤;엄재원;최태영
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.3
    • /
    • pp.217-226
    • /
    • 2003
  • A novel fingerprint ridge feature extraction using sequential labeling of thinned fingerprint image is proposed, which is invariant to position translation, scaling, and rotation. the proposed algorithm labels ridges of thinned fingerprint image sequentially using vertical line that goes through fingerprint core point. Then, we extract a feature from each labeled ridge and the extraction process is based on the type fo the ridge and a minutiae ridge angle in the ridge. The feature extracted through this process enables us to find out the kind of various minutiae and minutiae angle. As a result of the experiment using two thinned fingerprint images, we finally confirm that proposed algorithm is not related to position translation, scaling, and rotation.