• Title/Summary/Keyword: Feature Point

Search Result 1,350, Processing Time 0.023 seconds

Real-Time Face Avatar Creation and Warping Algorithm Using Local Mean Method and Facial Feature Point Detection

  • Lee, Eung-Joo;Wei, Li
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.6
    • /
    • pp.777-786
    • /
    • 2008
  • Human face avatar is important information in nowadays, such as describing real people in virtual world. In this paper, we have presented a face avatar creation and warping algorithm by using face feature analysis method, in order to detect face feature, we utilized local mean method based on facial feature appearance and face geometric information. Then detect facial candidates by using it's character in $YC_bC_r$ color space. Meanwhile, we also defined the rules which are based on face geometric information to limit searching range. For analyzing face feature, we used face feature points to describe their feature, and analyzed geometry relationship of these feature points to create the face avatar. Then we have carried out simulation on PC and embed mobile device such as PDA and mobile phone to evaluate efficiency of the proposed algorithm. From the simulation results, we can confirm that our proposed algorithm will have an outstanding performance and it's execution speed can also be acceptable.

  • PDF

The Tracing Algorithm for Center Pixel of Character Image and the Design of Neural Chip (문자영상의 중심화소 추적 알고리즘 및 신경칩 설계)

  • 고휘진;여진경;정호선
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.8
    • /
    • pp.35-43
    • /
    • 1992
  • We have presented the tracing algorithm for center pixel of character image. Character image was read by scanner device. Performing the tracing process, it can be possible to detect feature points, such as branch point, stroke of 4 directions. So, the tracing process covers the thinning and feature point detection process for improving the processing time. Usage of suggested tracing algorithm instead of thinning that is the preprocessing of character recognition increases speed up to 5 times. The preprocessing chip has been designed by using single layer perceptron algorithm.

  • PDF

A note on the distance distribution paradigm for Mosaab-metric to process segmented genomes of influenza virus

  • Daoud, Mosaab
    • Genomics & Informatics
    • /
    • v.18 no.1
    • /
    • pp.7.1-7.7
    • /
    • 2020
  • In this paper, we present few technical notes about the distance distribution paradigm for Mosaab-metric using 1, 2, and 3 grams feature extraction techniques to analyze composite data points in high dimensional feature spaces. This technical analysis will help the specialist in bioinformatics and biotechnology to deeply explore the biodiversity of influenza virus genome as a composite data point. Various technical examples are presented in this paper, in addition, the integrated statistical learning pipeline to process segmented genomes of influenza virus is illustrated as sequential-parallel computational pipeline.

The Study on the Feature Point Recognition and Classification of Radial Pulse (맥파의 특징점 인식과 파형의 분류에 관한 연구)

  • 길세기;김낙환;이상민;박승환;홍승홍
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.555-558
    • /
    • 1999
  • In this paper, Ire present the result of feature points recognition and classification of radial pulse by the shape of pulse wave. The recognition algorithm use the method which runs in parallel with both the data of ECG and differential pulse simultaneously to recognize the feature points. Also we specified 3-time elements of pulse wave as main parameters for diagnosis and measured them by execution of algorithm. then we classify the shape of radial pulse by existence and position of feature points.

  • PDF

Comparative Analysis of Detection Algorithms for Corner and Blob Features in Image Processing

  • Xiong, Xing;Choi, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.284-290
    • /
    • 2013
  • Feature detection is very important to image processing area. In this paper we compare and analyze some characteristics of image processing algorithms for corner and blob feature detection. We also analyze the simulation results through image matching process. We show that how these algorithms work and how fast they execute. The simulation results are shown for helping us to select an algorithm or several algorithms extracting corner and blob feature.

Methods for Extracting Feature Points from Ultrasound Images (초음파 영상에서의 특징점 추출 방법)

  • Kim, Sung-Jung;Yoo, JaeChern
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.59-60
    • /
    • 2020
  • 본 논문에서는 특징점 추출 알고리즘 중 SIFT(Scale Invariant Feature Transform)알고리즘을 사용하여 유의미한 특징점을 추출하기 위한 방법을 제안하고자한다. 추출된 특징점을 실제 이미지에 display 해봄으로써 성능을 확인해본다.

  • PDF

3D Point Cloud Reconstruction Technique from 2D Image Using Efficient Feature Map Extraction Network (효율적인 feature map 추출 네트워크를 이용한 2D 이미지에서의 3D 포인트 클라우드 재구축 기법)

  • Kim, Jeong-Yoon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.408-415
    • /
    • 2022
  • In this paper, we propose a 3D point cloud reconstruction technique from 2D images using efficient feature map extraction network. The originality of the method proposed in this paper is as follows. First, we use a new feature map extraction network that is about 27% efficient than existing techniques in terms of memory. The proposed network does not reduce the size to the middle of the deep learning network, so important information required for 3D point cloud reconstruction is not lost. We solved the memory increase problem caused by the non-reduced image size by reducing the number of channels and by efficiently configuring the deep learning network to be shallow. Second, by preserving the high-resolution features of the 2D image, the accuracy can be further improved than that of the conventional technique. The feature map extracted from the non-reduced image contains more detailed information than the existing method, which can further improve the reconstruction accuracy of the 3D point cloud. Third, we use a divergence loss that does not require shooting information. The fact that not only the 2D image but also the shooting angle is required for learning, the dataset must contain detailed information and it is a disadvantage that makes it difficult to construct the dataset. In this paper, the accuracy of the reconstruction of the 3D point cloud can be increased by increasing the diversity of information through randomness without additional shooting information. In order to objectively evaluate the performance of the proposed method, using the ShapeNet dataset and using the same method as in the comparative papers, the CD value of the method proposed in this paper is 5.87, the EMD value is 5.81, and the FLOPs value is 2.9G. It was calculated. On the other hand, the lower the CD and EMD values, the better the accuracy of the reconstructed 3D point cloud approaches the original. In addition, the lower the number of FLOPs, the less memory is required for the deep learning network. Therefore, the CD, EMD, and FLOPs performance evaluation results of the proposed method showed about 27% improvement in memory and 6.3% in terms of accuracy compared to the methods in other papers, demonstrating objective performance.

Matching Of Feature Points using Dynamic Programming (동적 프로그래밍을 이용한 특징점 정합)

  • Kim, Dong-Keun
    • The KIPS Transactions:PartB
    • /
    • v.10B no.1
    • /
    • pp.73-80
    • /
    • 2003
  • In this paper we propose an algorithm which matches the corresponding feature points between the reference image and the search image. We use Harris's corner detector to find the feature points in both image. For each feature point in the reference image, we can extract the candidate matching points as feature points in the starch image which the normalized correlation coefficient goes greater than a threshold. Finally we determine a corresponding feature points among candidate points by using dynamic programming. In experiments we show results that match feature points in synthetic image and real image.

Point Pattern Matching Algorithm Using Unit-Circle Parametrization

  • Choi, Nam-Seok;Lee, Byung-Gook;Lee, Joon-Jae
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.6
    • /
    • pp.825-832
    • /
    • 2010
  • This paper presents only a matching algorithm based on Delaunay triangulation and Parametrization from the extracted minutiae points. This method maps local neighborhood of points of two different point sets to unit-circle using topology information by Delaunay triangulation method from feature points of real fingerprint. Then, a linked convex polygon that includes an interior point is constructed as one-ring which is mapped to unit-circle using Parametrization that keep shape preserve. In local matching, each area of polygon in unit-circle is compared. If the difference of two areas are within tolerance, two polygons are consider to be matched and then translation, rotation and scaling factors for global matching are calculated.

Noise Robust Speaker Verification Using Subband-Based Reliable Feature Selection (신뢰성 높은 서브밴드 특징벡터 선택을 이용한 잡음에 강인한 화자검증)

  • Kim, Sung-Tak;Ji, Mi-Kyong;Kim, Hoi-Rin
    • MALSORI
    • /
    • no.63
    • /
    • pp.125-137
    • /
    • 2007
  • Recently, many techniques have been proposed to improve the noise robustness for speaker verification. In this paper, we consider the feature recombination technique in multi-band approach. In the conventional feature recombination for speaker verification, to compute the likelihoods of speaker models or universal background model, whole feature components are used. This computation method is not effective in a view point of multi-band approach. To deal with non-effectiveness of the conventional feature recombination technique, we introduce a subband likelihood computation, and propose a modified feature recombination using subband likelihoods. In decision step of speaker verification system in noise environments, a few very low likelihood scores of a speaker model or universal background model cause speaker verification system to make wrong decision. To overcome this problem, a reliable feature selection method is proposed. The low likelihood scores of unreliable feature are substituted by likelihood scores of the adaptive noise model. In here, this adaptive noise model is estimated by maximum a posteriori adaptation technique using noise features directly obtained from noisy test speech. The proposed method using subband-based reliable feature selection obtains better performance than conventional feature recombination system. The error reduction rate is more than 31 % compared with the feature recombination-based speaker verification system.

  • PDF