• Title/Summary/Keyword: Feature Extraction and Recognition

Search Result 821, Processing Time 0.034 seconds

Feature Extraction from the Strange Attractor for Speaker Recognition (화자인식을 위한 어트랙터로 부터의 음성특징추출)

  • Kim, Tae-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2E
    • /
    • pp.26-31
    • /
    • 1994
  • A new feature extraction technique utilizing strange attractor and artificial neural network for speaker recognition is presented. Since many signals change their characteristics over long periods of time, simple time-domain processing techniques should e capable of providing useful information of signal features. In many cases, normal time series can be viewed as a dynamical system with a low-dimensional attractor that can be reconstructed from the time series using time delay. The reconstruction of strange attractor is described. In the technique, the raw signal will be reproduced into a geometric three dimensional attractor. Classification decision for speaker recognition is based upon the processing or sets of feature vectors that are derived from the attractor. Three different methods for feature extraction will be discussed. The methods include box-counting dimension, natural measure with regular hexahedron and plank-type box. An artificial neural network is designed for training the feature data generated by the method. The recognition rates are about 82%-96% depending on the extraction method.

  • PDF

Feature Area-based Vehicle Plate Recognition System(VPRS) (특징 영역 기반의 자동차 번호판 인식 시스템)

  • Jo, Bo-Ho;Jeong, Seong-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.6
    • /
    • pp.1686-1692
    • /
    • 1999
  • This paper describes the feature area-based vehicle plate recognition system(VPRS). For the extraction of vehicle plate in a vehicle image, we used the method which extracts vehicle plate area from a s vehicle image using intensity variation. For the extraction of the feature area containing character from the extracted vehicle plate, we used the histogram-based approach and the relative location information of individual characters in the extracted vehicle plate. The extracted feature area is used as the input vector of ART2 neural network. The proposed method simplifies the existing complex preprocessing the solves the problem of distortion and noise in the binarization process. In the difficult cases of character extraction by binarization process of previous method, our method efficiently extracts characters regions and recognizes it.

  • PDF

A study on the Optimal Feature Extraction and Cmplex Adaptive Filter for a speech recognition (음성인식을 위한 복합형잡음제거필터와 최적특징추출에 관한 연구)

  • Cha, T.H.;Jang, S.K.;Choi, U.S;Choi, I.H.;Kim, C.S.
    • Speech Sciences
    • /
    • v.4 no.2
    • /
    • pp.55-68
    • /
    • 1998
  • In this paper, a novel method of noise reduction of speech based on a complex adaptive noise canceler and method of optimal feature extraction are proposed. This complex adaptive noise canceler needs simply the noise detection, and LMS algorithm used to calculate the adaptive filter coefficient. The method of optimal feature extraction requires the variance of noise. The experimental results have shown that the proposed method effectively reduced noise in noisy speech. Optimal feature extraction has shown similar characteristics in noise-free speech.

  • PDF

Selective Speech Feature Extraction using Channel Similarity in CHMM Vocabulary Recognition (CHMM 어휘인식에서 채널 유사성을 이용한 선택적 음성 특징 추출)

  • Oh, Sang Yeon
    • Journal of Digital Convergence
    • /
    • v.11 no.10
    • /
    • pp.453-458
    • /
    • 2013
  • HMM Speech recognition systems have a few weaknesses, including failure to recognize speech due to the mixing of environment noise other voices. In this paper, we propose a speech feature extraction methode using CHMM for extracting selected target voice from mixture of voices and noises. we make use of channel similarity and correlate relation for the selective speech extraction composes. This proposed method was validated by showing that the average distortion of separation of the technique decreased by 0.430 dB. It was shown that the performance of the selective feature extraction is better than another system.

Robust Real-time Tracking of Facial Features with Application to Emotion Recognition (안정적인 실시간 얼굴 특징점 추적과 감정인식 응용)

  • Ahn, Byungtae;Kim, Eung-Hee;Sohn, Jin-Hun;Kweon, In So
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.4
    • /
    • pp.266-272
    • /
    • 2013
  • Facial feature extraction and tracking are essential steps in human-robot-interaction (HRI) field such as face recognition, gaze estimation, and emotion recognition. Active shape model (ASM) is one of the successful generative models that extract the facial features. However, applying only ASM is not adequate for modeling a face in actual applications, because positions of facial features are unstably extracted due to limitation of the number of iterations in the ASM fitting algorithm. The unaccurate positions of facial features decrease the performance of the emotion recognition. In this paper, we propose real-time facial feature extraction and tracking framework using ASM and LK optical flow for emotion recognition. LK optical flow is desirable to estimate time-varying geometric parameters in sequential face images. In addition, we introduce a straightforward method to avoid tracking failure caused by partial occlusions that can be a serious problem for tracking based algorithm. Emotion recognition experiments with k-NN and SVM classifier shows over 95% classification accuracy for three emotions: "joy", "anger", and "disgust".

A Study On Face Feature Points Using Active Discrete Wavelet Transform (Active Discrete Wavelet Transform를 이용한 얼굴 특징 점 추출)

  • Chun, Soon-Yong;Zijing, Qian;Ji, Un-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.1
    • /
    • pp.7-16
    • /
    • 2010
  • Face recognition of face images is an active subject in the area of computer pattern recognition, which has a wide range of potential. Automatic extraction of face image of the feature points is an important step during automatic face recognition. Whether correctly extract the facial feature has a direct influence to the face recognition. In this paper, a new method of facial feature extraction based on Discrete Wavelet Transform is proposed. Firstly, get the face image by using PC Camera. Secondly, decompose the face image using discrete wavelet transform. Finally, we use the horizontal direction, vertical direction projection method to extract the features of human face. According to the results of the features of human face, we can achieve face recognition. The result show that this method could extract feature points of human face quickly and accurately. This system not only can detect the face feature points with great accuracy, but also more robust than the tradition method to locate facial feature image.

A PSRI Feature Extraction and Automatic Target Recognition Using a Cooperative Network and an MLP. (Cooperative network와 MLP를 이용한 PSRI 특징추출 및 자동표적인식)

  • 전준형;김진호;최흥문
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.6
    • /
    • pp.198-207
    • /
    • 1996
  • A PSRI (position, scale, and rotation invariant ) feature extraction and automatic target recognition system using a cooperative network and an MLP is proposed. We can extract position invarient features by obtaining the target center using the projection and the moment in preprocessing stage. The scale and rotation invariant features are extracted from the contour projection of the number of edge pixels on each of the concentric circles, which is input to the cooperative network. By extracting the representative PSRI features form the features and their differentiations using max-net and min-net, we can rdduce the number of input neurons of the MLP, and make the resulted automatic target recognition system less sensitive to input variances. Experiments are conduted on various complex images which are shifted, rotated, or scaled, and the results show that the proposed system is very efficient for PSRI feature extractions and automatic target recognitions.

  • PDF

Availability Verification of Feature Variables for Pattern Classification on Weld Flaws (용접결함의 패턴분류를 위한 특징변수 유효성 검증)

  • Kim, Chang-Hyun;Kim, Jae-Yeol;Yu, Hong-Yeon;Hong, Sung-Hoon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.62-70
    • /
    • 2007
  • In this study, the natural flaws in welding parts are classified using the signal pattern classification method. The storage digital oscilloscope including FFT function and enveloped waveform generator is used and the signal pattern recognition procedure is made up the digital signal processing, feature extraction, feature selection and classifier design. It is composed with and discussed using the distance classifier that is based on euclidean distance the empirical Bayesian classifier. Feature extraction is performed using the class-mean scatter criteria. The signal pattern classification method is applied to the signal pattern recognition of natural flaws.

Separation of Subpatern and Recognition of Hanguel Patterns by Analysis of Feature of Contacting Phonemes (자소 접촉특성 분석에 의한 한글패턴의 부분분리 및 인식)

  • Koh, Chan;Chin, Yong-Ohk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.7
    • /
    • pp.618-627
    • /
    • 1990
  • In this paper a new algorithm for separation of contacting subpattern and connective feature extraction of strokes is proposed. This algorithm is able to classification of the type of contacting parts, connective feature extreaction of strokes, separate the phoneme of contacting parts between strokes, classify the character types by feature classification of connecting parts and analysis of connecting attribute. Also, shape normalize into formal patterns and decide on the input pattern from position value of bending feature of this normalized shape and make an recognition experiment by neural network using BEP learining algorithm. This algorithm represents the good achievement ratio by separation of phoneme, classification of character type, connective feature extraction of stroke and recognition experiment.

  • PDF

Dynamic Hand Gesture Recognition Using CNN Model and FMM Neural Networks (CNN 모델과 FMM 신경망을 이용한 동적 수신호 인식 기법)

  • Kim, Ho-Joon
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.95-108
    • /
    • 2010
  • In this paper, we present a hybrid neural network model for dynamic hand gesture recognition. The model consists of two modules, feature extraction module and pattern classification module. We first propose a modified CNN(convolutional Neural Network) a pattern recognition model for the feature extraction module. Then we introduce a weighted fuzzy min-max(WFMM) neural network for the pattern classification module. The data representation proposed in this research is a spatiotemporal template which is based on the motion information of the target object. To minimize the influence caused by the spatial and temporal variation of the feature points, we extend the receptive field of the CNN model to a three-dimensional structure. We discuss the learning capability of the WFMM neural networks in which the weight concept is added to represent the frequency factor in training pattern set. The model can overcome the performance degradation which may be caused by the hyperbox contraction process of conventional FMM neural networks. From the experimental results of human action recognition and dynamic hand gesture recognition for remote-control electric home appliances, the validity of the proposed models is discussed.