• Title/Summary/Keyword: Feature Extraction Ensemble

Search Result 19, Processing Time 0.03 seconds

Ensemble convolutional neural networks for automatic fusion recognition of multi-platform radar emitters

  • Zhou, Zhiwen;Huang, Gaoming;Wang, Xuebao
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.750-759
    • /
    • 2019
  • Presently, the extraction of hand-crafted features is still the dominant method in radar emitter recognition. To solve the complicated problems of selection and updation of empirical features, we present a novel automatic feature extraction structure based on deep learning. In particular, a convolutional neural network (CNN) is adopted to extract high-level abstract representations from the time-frequency images of emitter signals. Thus, the redundant process of designing discriminative features can be avoided. Furthermore, to address the performance degradation of a single platform, we propose the construction of an ensemble learning-based architecture for multi-platform fusion recognition. Experimental results indicate that the proposed algorithms are feasible and effective, and they outperform other typical feature extraction and fusion recognition methods in terms of accuracy. Moreover, the proposed structure could be extended to other prevalent ensemble learning alternatives.

Multi-Time Window Feature Extraction Technique for Anger Detection in Gait Data

  • Beom Kwon;Taegeun Oh
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.41-51
    • /
    • 2023
  • In this paper, we propose a technique of multi-time window feature extraction for anger detection in gait data. In the previous gait-based emotion recognition methods, the pedestrian's stride, time taken for one stride, walking speed, and forward tilt angles of the neck and thorax are calculated. Then, minimum, mean, and maximum values are calculated for the entire interval to use them as features. However, each feature does not always change uniformly over the entire interval but sometimes changes locally. Therefore, we propose a multi-time window feature extraction technique that can extract both global and local features, from long-term to short-term. In addition, we also propose an ensemble model that consists of multiple classifiers. Each classifier is trained with features extracted from different multi-time windows. To verify the effectiveness of the proposed feature extraction technique and ensemble model, a public three-dimensional gait dataset was used. The simulation results demonstrate that the proposed ensemble model achieves the best performance compared to machine learning models trained with existing feature extraction techniques for four performance evaluation metrics.

PCA-CIA Ensemble-based Feature Extraction for Bio-Key Generation

  • Kim, Aeyoung;Wang, Changda;Seo, Seung-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.2919-2937
    • /
    • 2020
  • Post-Quantum Cryptography (PQC) is rapidly developing as a stable and reliable quantum-resistant form of cryptography, throughout the industry. Similarly to existing cryptography, however, it does not prevent a third-party from using the secret key when third party obtains the secret key by deception, unauthorized sharing, or unauthorized proxying. The most effective alternative to preventing such illegal use is the utilization of biometrics during the generation of the secret key. In this paper, we propose a biometric-based secret key generation scheme for multivariate quadratic signature schemes, such as Rainbow. This prevents the secret key from being used by an unauthorized third party through biometric recognition. It also generates a shorter secret key by applying Principal Component Analysis (PCA)-based Confidence Interval Analysis (CIA) as a feature extraction method. This scheme's optimized implementation performed well at high speeds.

Sequence driven features for prediction of subcellular localization of proteins

  • Kim, Jong-Kyoung;Bang, Sung-Yang;Choi, Seung-Jin
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.237-242
    • /
    • 2005
  • Predicting the cellular location of an unknown protein gives a valuable information for inferring the possible function of the protein. For more accurate prediction system, we need a good feature extraction method that transforms the raw sequence data into the numerical feature vector, minimizing information loss. In this paper, we propose new methods of extracting underlying features only from the sequence data by computing pairwise sequence alignment scores. In addition, we use composition based features to improve prediction accuracy. To construct an SVM ensemble from separately trained SVM classifiers, we propose specificity based weighted majority voting. The overall prediction accuracy evaluated by the 5-fold cross-validation reached 88.53% for the eukaryotic animal data set. By comparing the prediction accuracy of various feature extraction methods, we could get the biological insight on the location of targeting information. Our numerical experiments confirm that our new feature extraction methods are very useful for predicting subcellular localization of proteins.

  • PDF

Relevancy contemplation in medical data analytics and ranking of feature selection algorithms

  • P. Antony Seba;J. V. Bibal Benifa
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.448-461
    • /
    • 2023
  • This article performs a detailed data scrutiny on a chronic kidney disease (CKD) dataset to select efficient instances and relevant features. Data relevancy is investigated using feature extraction, hybrid outlier detection, and handling of missing values. Data instances that do not influence the target are removed using data envelopment analysis to enable reduction of rows. Column reduction is achieved by ranking the attributes through feature selection methodologies, namely, extra-trees classifier, recursive feature elimination, chi-squared test, analysis of variance, and mutual information. These methodologies are ranked via Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) using weight optimization to identify the optimal features for model building from the CKD dataset to facilitate better prediction while diagnosing the severity of the disease. An efficient hybrid ensemble and novel similarity-based classifiers are built using the pruned dataset, and the results are thereafter compared with random forest, AdaBoost, naive Bayes, k-nearest neighbors, and support vector machines. The hybrid ensemble classifier yields a better prediction accuracy of 98.31% for the features selected by extra tree classifier (ETC), which is ranked as the best by TOPSIS.

Sequence driven features for prediction of subcellular localization of proteins (단백질의 세포내 소 기관별 분포 예측을 위한 서열 기반의 특징 추출 방법)

  • Kim, Jong-Kyoung;Choi, Seung-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.226-228
    • /
    • 2005
  • Predicting the cellular location of an unknown protein gives valuable information for inferring the possible function of the protein. For more accurate Prediction system, we need a good feature extraction method that transforms the raw sequence data into the numerical feature vector, minimizing information loss. In this paper we propose new methods of extracting underlying features only from the sequence data by computing pairwise sequence alignment scores. In addition, we use composition based features to improve prediction accuracy. To construct an SVM ensemble from separately trained SVM classifiers, we propose specificity based weighted majority voting . The overall prediction accuracy evaluated by the 5-fold cross-validation reached $88.53\%$ for the eukaryotic animal data set. By comparing the prediction accuracy of various feature extraction methods, we could get the biological insight on the location of targeting information. Our numerical experiments confirm that our new feature extraction methods are very useful forpredicting subcellular localization of proteins.

  • PDF

Distributed Processing System Design and Implementation for Feature Extraction from Large-Scale Malicious Code (대용량 악성코드의 특징 추출 가속화를 위한 분산 처리 시스템 설계 및 구현)

  • Lee, Hyunjong;Euh, Seongyul;Hwang, Doosung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.2
    • /
    • pp.35-40
    • /
    • 2019
  • Traditional Malware Detection is susceptible for detecting malware which is modified by polymorphism or obfuscation technology. By learning patterns that are embedded in malware code, machine learning algorithms can detect similar behaviors and replace the current detection methods. Data must collected continuously in order to learn malicious code patterns that change over time. However, the process of storing and processing a large amount of malware files is accompanied by high space and time complexity. In this paper, an HDFS-based distributed processing system is designed to reduce space complexity and accelerate feature extraction time. Using a distributed processing system, we extract two API features based on filtering basis, 2-gram feature and APICFG feature and the generalization performance of ensemble learning models is compared. In experiments, the time complexity of the feature extraction was improved about 3.75 times faster than the processing time of a single computer, and the space complexity was about 5 times more efficient. The 2-gram feature was the best when comparing the classification performance by feature, but the learning time was long due to high dimensionality.

Ensemble Model Based Intelligent Butterfly Image Identification Using Color Intensity Entropy (컬러 영상 색채 강도 엔트로피를 이용한 앙상블 모델 기반의 지능형 나비 영상 인식)

  • Kim, Tae-Hee;Kang, Seung-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.972-980
    • /
    • 2022
  • The butterfly species recognition technology based on machine learning using images has the effect of reducing a lot of time and cost of those involved in the related field to understand the diversity, number, and habitat distribution of butterfly species. In order to improve the accuracy and time efficiency of butterfly species classification, various features used as the inputs of machine learning models have been studied. Among them, branch length similarity(BLS) entropy or color intensity entropy methods using the concept of entropy showed higher accuracy and shorter learning time than other features such as Fourier transform or wavelet. This paper proposes a feature extraction algorithm using RGB color intensity entropy for butterfly color images. In addition, we develop butterfly recognition systems that combines the proposed feature extraction method with representative ensemble models and evaluate their performance.

Speech Query Recognition for Tamil Language Using Wavelet and Wavelet Packets

  • Iswarya, P.;Radha, V.
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1135-1148
    • /
    • 2017
  • Speech recognition is one of the fascinating fields in the area of Computer science. Accuracy of speech recognition system may reduce due to the presence of noise present in speech signal. Therefore noise removal is an essential step in Automatic Speech Recognition (ASR) system and this paper proposes a new technique called combined thresholding for noise removal. Feature extraction is process of converting acoustic signal into most valuable set of parameters. This paper also concentrates on improving Mel Frequency Cepstral Coefficients (MFCC) features by introducing Discrete Wavelet Packet Transform (DWPT) in the place of Discrete Fourier Transformation (DFT) block to provide an efficient signal analysis. The feature vector is varied in size, for choosing the correct length of feature vector Self Organizing Map (SOM) is used. As a single classifier does not provide enough accuracy, so this research proposes an Ensemble Support Vector Machine (ESVM) classifier where the fixed length feature vector from SOM is given as input, termed as ESVM_SOM. The experimental results showed that the proposed methods provide better results than the existing methods.

Suggestion of Selecting features and learning models for Android-based App Malware Detection (안드로이드 기반 앱 악성코드 탐지를 위한 Feature 선정 및 학습모델 제안)

  • Bae, Se-jin;Rhee, Jung-soo;Baik, Nam-kyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.377-380
    • /
    • 2022
  • An application called an app can be downloaded and used on mobile devices. Among them, Android-based apps have the disadvantage of being implemented on an open source basis and can be exploited by anyone, but unlike iOS, which discloses only a small part of the source code, Android is implemented as an open source, so it can analyze the code. However, since anyone can participate in changing the source code of open source-based Android apps, the number of malicious codes increases and types are bound to vary. Malicious codes that increase exponentially in a short period of time are difficult for humans to detect one by one, so it is efficient to use a technique to detect malicious codes using AI. Most of the existing malicious app detection methods are to extract Features and detect malicious apps. Therefore, three ways to select the optimal feature to be used for learning after feature extraction are proposed. Finally, in the step of modeling with optimal features, ensemble techniques are used in addition to a single model. Ensemble techniques have already shown results beyond the performance of a single model, as has been shown in several studies. Therefore, this paper presents a plan to select the optimal feature and implement a learning model for Android app-based malicious code detection.

  • PDF