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ABSTRACT: Predicting the cellular location of an un-
known protein gives a valuable information for inferring the
possible function of the protein. For more accurate predic-
tion system, we need a good feature extraction method that
transforms the raw sequence data into the numerical feature
vector, minimizing information loss. In this paper, we pro-
pose new methods of extracting underlying features only from
the sequence data by computing pairwise sequence alignment
scores. In addition, we use composition based features to im-
prove prediction accuracy. To construct an SVM ensemble
from separately trained SVM classifiers, we propose speci-
ficity based weighted majority voting. The overall predic-
tion accuracy evaluated by the 5-fold cross-validation reached
88.53% for the eukaryotic animal data set. By comparing the
prediction accuracy of various feature extraction methods, we
could get the biological insight on the location of targeting in-
formation. Our numerical experiments confirm that our new
feature extraction methods are very useful for predicting sub-
cellular localization of proteins.

1 INTRODUCTION

In a eukaryotic animal cell, nuclear-encoded proteins are syn-
thesized by ribosomes in the cytosol, and delivered to their
proper cellular organelles for the co-operational execution of
a common biological function. The delivery of a newly syn-
thesized protein in the cytosol to its correct location is re-
ferred to as protein sorting or subcellular localization. The
major protein sorting processes can be divided into secretory
and non-secretory pathway. In the secretory pathway, all pro-
teins are delivered to the ER as a first step, and directed to
their final destinations. All proteins that contain no ER sig-
nal sequences are delivered through the non-secretory path-
way. The targeting information of proteins directing them to
their correct cellular destinations is stored either in the signal
sequences or in the form of post-translational modifications.
The proteins directed to the ER and the mitochondrion have
an N-terminal signal sequence. For targeting to the peroxi-
some, proteins have a signal sequence which is located at the
N-terminus or C-terminus. The signal sequences directing to
nuclear can be present anywhere in the protein. In the secre-
tory pathway, proteins are sorted to their final locations by
several targeting features such as signal sequences, topogenic
sequences, and post-translational modifications. The location
of these features in the protein sequence cannot be restricted

to the subsequences [1].

Predicting the cellular location of an unknown protein gives
a valuable information for inferring the possible function of
the protein. To achieve a good prediction result, we need ef-
fective feature extraction methods that transform the raw se-
quence data into the numerical feature vector, minimizing in-
formation loss. Most of prediction methods can be divided
into two classes, depending on their ways of feature extrac-
tion: (1) features based on protein sequence data; (2) features
based on ontology data. In the protein sequence based ap-
proach, two different methods are popular. These involve the
recognition of N-terminal sorting signals or the detection of
amino acids composition from an entire sequence. The former
has the strong biological implication since proteins delivered
to the ER, the mitochondrion, or the peroxisome (partially)
have an N-terminal signal sequence [2]. However, it is dif-
ficult to recognize underlying features from a highly diverse
signal sequence and to vectorize them. The latter approach
partially overcomes these difficulties but lose the context in-
formation stored in the sequence data [3]. The ontology-based
approach has received mush attention recently because of its
high prediction accuracy [4]. This approach extracts text in-
formation of homologous sequences of a query sequence by
searching biological databases and vectorize the extracted in-
formation. It is not surprising for this approach to show good
performance because it utilized various extra information de-
rived from several sources. In addition, it cannot give biolog-
ical insight and interpretation on factors specifying cellular
locations of proteins. Although much work has been done on
improving the prediction accuracy of subcellular localization,
little research has been conducted on feature extraction meth-
ods relying solely on amino acid sequence properties.

In this paper, we propose new methods of extracting under-
lying features only from the sequence data to predict subcel-
lular localization. To this end, we introduce various pairwise
sequence alignment methods so that a protein sequence is rep-
resented as a numerical vector of pairwise sequence alignment
scores. Additionally, we use amino acids composition based
features to improve prediction accuracy. For classification,
we use a SVM ensemble to combine mixed type of features.
Our numerical experiments confirm that our proposed meth-
ods considerably improve the prediction accuracy and give bi-
ological insight into the position of targeting information in
the protein sequence.
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2 FEATURE EXTRACTION

Recent studies of the feature extraction methods based on
amino acid sequence properties have tended to center around
amino acid composition. Although amino acid composition
and subcellular localization are related, composition based
methods have critical limitations in terms of its discriminative
power and location coverage. We proposed, in our previous
work, a new feature extraction method representing a protein
sequence as the scores of dynamic global sequence alignment
[5]. Despite its very high prediction accuracy, its time com-
plexity was relatively higher than that of composition based
method. Additionally, its location coverage was limited to
some proteins whose signal sequences are located at the N-
terminus. To overcome these limitations, we present three dif-
ferent methods extracting features from signal sequences in
the N-terminus, or anywhere in the sequence. We also use
two composition based methods to improve the prediction ac-
curacy.

2.1 Preprocessing

In our previous work, we converted a protein sequence into
the corresponding feature vector by computing the scores of
the Needleman-Wunsch algorithm between the sequence and
all sequences in the training set [6]. Therefore, if the size of
. the training set is very large, the vectorization step takes too
much time. We select, in this study, representative sequences
in the training set in order to decrease the time complexity.
For this purpose, we cluster all sequences in the training set
by using a constructed phylogenetic tree. The overall frame-
work clustering the training sequences for each class can be
described as follows. First, all sequences are truncated after
first 40 residues to consider only the N-terminus. We did not
use the entire sequence because it makes very long average
distance between pairs of sequences within each cluster. Sec-
ond, we calculate the Jukes-Cantor distance between each pair
of sequences. The Jukes-Cantor distance, which is the max-
imum likelihood estimate of the number of substitutions be-
tween two sequences, can be calculated after aligning all pairs
of sequences by using the Needleman-Wunsch algorithm. In
the next step, we construct the phylogenetic tree with the UP-
GMA clustering method, which stands for unweighted pair
group method using arithmetic averages [7]. After construct-
ing the tree, we can make clusters by selecting some parent
nodes because all the leaf nodes sharing the parent node can
be considered as a cluster. We select the parent nodes by con-
sidering the distance between leaf nodes and the parent node,
and the number of leaf nodes. If the distance exceeds the max-
imum allowable distance, which is 3.0, the child node is con-
sidered. Also, if the number of leaf nodes is too large or small,
we consider the child node of the node. The maximum and
minimum number of leaf nodes are different for each class, in
accordance with the class size.

2.2 N-terminal profile Hidden Markov Model

After the above preprocessing step, we have clusters of se-
quences for each class. The natural choice is to build pro-
file Hidden Markov models (HMMs) which are well suited

to statistically model patterns in multiply aligned sequences
[71. The constructed profile HMMs for each cluster represent
the N-terminal sequence families. Before building the profile
HMMs, we did multiple sequence alignment of the N-terminal
truncated sequences for each cluster by using CLUSTALX
1.83 {8]. Then, we built the profile HMMs with HMMer 2.3.1
[9]. To align a protein sequence with the profile HMMs, we
should consider only the first 40 residues of the protein se-
quence. The truncated sequence is then converted into the cor-
responding feature vector by computing the log-odds scores
between the sequence and all the constructed profile HMMs.
A d-dimensional feature vector x, for the kth protein sequence
has the form

7, )

where T denotes the matrix or vector transpose operator and
Xy is the log-odds score between sequence k and the ith profile
HMM. Note that d is equal to the total number of constructed
profile HMMs.

Xk = [X1, %02, * , Xbd

2.3 N-terminal global pairwise sequence align-
ment

Instead of using all the sequences in the training set, selecting
representative sequences reduces the time complexity of cal-
culating the scores of pairwise sequence alignment. For this
purpose, we randomly select a protein sequence from each
cluster. The minimum length of the chosen sequences is 80
and the first residue should be methionine, which means the
first synthesized residue from the start codon. Since we want
to compare the N-terminal region, a protein sequence is trun-
cated after first 80 residues. The processed sequence is then
converted into the corresponding feature vector by computing
the scores of the Needleman-Wunsch algorithm between the
sequence and all the selected representative sequences. The
gap penalty is -8 and the substitution matrix is BLOSUM 50.

2.4 Full sequence local pairwise sequence
alignment

So far we have assumed that the signal sequences are located
at the N-terminal, and that we are looking for the global match
between two N-terminal regions. A much more common sit-
uation is that the signal sequences or the targeting informa-
tion are located anywhere in the protein. In this situation,
the most sensitive way to detect the internal targeting signals
is to use the algorithm for finding optimal local alignments,
which are referred to as the Smith-Waterman algorithm [10].
The general procedures of this feature extraction method is
almost same to the above one using the Needleman-Wunsch
algorithm. There are two differences. First, the N-terminal re-
gions of all the proteins are not truncated. The second change
is that the Smith-Waterman algorithm is used to find optimal
local alignments.

2.5 Full sequence dipeptide composition

It is known that amino acid composition and subcellular lo-
calization is related [11]. But, the predictive power of the
composition based approach is not enough to discriminate all
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proteins. The dipeptide composition is the extension of amino
acid composition adding the information on the local order of
amino acids. In practice, it is proved that the predictive power
of dipeptide composition is superior to amino acid composi-
tion. The compositional fraction of the ith dipeptide f;.(i) is
defined by

N()

NG

fdc(i) = (2)

where N(i) is the total count of ith dipeptide in the protein
sequence. Then, the feature vector x is given by

x = [fac(1), fuc(2),+ -+ fac(400))T

Note that the dimension of the feature vector is 400.

€)

2.6 Full sequence physico-chemical properties

It is generally thought that the factors determining the cellular
destination are physico-chemical properties such as hydropho-
bicity or the position of charged amino acids since the signal
sequences are not well conserved. The 121 physico-chemical
properties, whose list is available at here!, were used to rep-
resent a protein sequence as a 121 dimensional feature vec-
tor based on amino acid composition. We used the AAindex
database to get the values of physico-chemical properties for
all 20 amino acids, which are thought to be related to protein
function [12]. To be expressed in comparable units, the val-
ues are normalized by subtracting the mean and dividing by
the standard deviation. The average value of the ith physico-
chemical property is defined by

2
6= 3 A7) fuell) @
=1

J

where A;{(J) is the normalized value of the jth amino acid of
the ith physico-chemical property and f,-(j) is the composi-
tional fraction of the jth amino acid. The feature vector x is
given by

x = [g(1),8(2),---,g(121)]" )

3 CLASSIFICATION

3.1 Support vectof machine classifier

SVM classifiers receive their popularity from the fact that they
are based on the concept of statistical learning theory, or VC
(Vapnik-Chervonenkis) theory, and they can achieve high per-
formance in practical applications [13]. SVM classifiers are
basically kernel-based learning algorithms and find the opti-
mal hyperplane decision boundary in the feature space. In
kernel-based algorithms, a kernel trick leads us to process the
data in a higher-dimensional feature space constructed by a
nonlinear mapping, without the explicit knowledge of the non-
linear mapping. In a view of statistics, the high dimensional-
ity of the feature space can cause the curse of dimensionality.
However, the optimal separating hyperplane with a maximal
margin in the feature space, can relieve this problem. In sta-
tistical learning theory, we an minimize the complexity term

Thome.postech.ac kr/~blkimjk/aaindex I m.txt

of the upper bound of the expected risk by maximizing the
margin of the separating hyperplane. The minimization of the
upper bound can be viewed as relieving the over-fitting prob-
lem [14]. The maximization of the margin can be formulated
as a quadratic optimization program so that a global solution
can be easily obtained.

In the present study, we used OSU SVM Matlab toolbox
3.00 for the SVM classifier that is freely available at here?.
The prediction of subcellular localization is a multi-class clas-
sification problem but the SVM classifier can only deal with
the binary classification problem. Therefore, we need to con-
struct a set of binary classifier for multi-class classification.
We constructed (M — 1)M /2 binary classifiers for M classes.
In this pairwise classification, each possible pair of classes is
considered and a test pattern is classified by the majority vot-
ing. The kernel function used in this study is the radial basis
Junction (RBF) kernel with one parameter y:

k(x,y) = exp {—vllx—yl}. ©)
During the training and testing, only the RBF kemel parameter
¥ and the regularization parameter C were considered and the
remaining parameters were kept constant.

3.2 Weighted majority voting

An SVM ensemble is a collection of several SVM classifiers
whose individual decisions are combined in some aggregation
methods. It is known that the performance of the SVM ensem-
ble is often much better than that of individual SVM classifiers
because of the independently trained SVM classifiers and their
uncorrelated errors [15]. Since we trained several independent
SVM classifiers for each feature, we need to aggregate them
in an appropriate manner. The majority voting is the simplest
and widely used aggregation method. Let i, k=1,...,K, be
the predicted class label of the kth SVM classifier in the SVM
ensemble and C;, j = 1,...,M, denote the jth class label. The
final predicted class label of the SVM ensemble C(x) for a
given input X is determined by

K
C(x) =argmax Y. It; 0
I k=1
in which .
o 1 ika(X)=Cj
L _{ 0 otherwise ®)

This voting scheme treats all SVM classifiers with equal
weights. Since the prediction errors of the classifiers are of-
ten different, it is more realistic to give different weights in
proportional to their prediction performance. In the weighted
majority voting, the predicted class label of the SVM ensem-
ble is given by

K
C(x) = argmjax Y Wk, j)I;
=1

®

where W (k, j) is the weight when the predicted class label of
the kth classifier is C;.

Zhttpi//www.ece.osu.edu/~maj/osusvm
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3.3 The proposed prediction system

The overall schematic diagram of our prediction system is il-
lustrated in Fig. 1. In our system, four major steps are needed
to get the final decision. In the first preprocessing step, a
test protein sequence is truncated after first 40 or 80 residues
to get the N-terminal regions. The truncated N-terminal se-
quences, in the next feature extraction step, are converted
into the two feature vectors by computing the scores of pair-
wise sequence alignments based on the profile HMM and the
Needleman-Wunsch algorithm. The full sequence is also con-
verted into the three feature vectors by computing the scores
of the Smith-Waterman algorithm, or by calculating the com-
positional fractions of all dipeptides and the average values
of the 121 physico-chemical properties. The representative
sequences and profile HMM models can be divided into two
parts which are positive and negative vectorization set. The
positive vectorization set means all sequences or models of
this set belong to the same class with the target sequence. The
negative vectorization set denotes the opposite case. There-
fore, the discriminative power of the feature vector is expected
to increase since it contains the information of positive and
negative examples. After these feature extraction steps, we
obtain the fixed-length feature vectors. At the classification
step, each of the five feature vectors is used as the input to
(M — 1)M /2 binary SVM classifiers for M classes. In this
pairwise classification, the feature vector is assigned to the
class associated with the highest value in the majority voting.
After that, in the weighted majority voting step, the final pre-
dicted class label is decided based on the five predicted class
labels.

Protein sequence
+ i
Protein Protein
sequence(1:40) sequence(1:80)
Profile HMM Dlpept.xc_le Physlco‘cht':nucal Smith- Needleman-
composition properties Waterman Wunsch
PR |
SWM SVM SVM SYM SVM
classifier 1 classifier 2 classifier 3 classifier 4 classifier 5
Weighted majority
voting
Prediction result

Figure 1: The schematic diagram of the proposed prediction
system is illustrated.

4 NUMERICAL EXPERIMENTS AND RE-
SULTS

4,1 Data sets

We used the animal data set generated by [4] for training and
evaluating our prediction system. All sequences in the data set
were extracted from SWISS-PROT release 42.7, and their cel-
lular locations were chosen by referring the SUBCELL field.
More information on the data creation steps is available at
here?. We excluded protein sequences containing ambigu-
ous amino acids such as B, Z, or X. As shown in Table 1,
the data set consists of 11688 eukaryotic animal proteins with
9 cellular locations: cytoplasm, endoplasmic reticulum (ER),
extracellular, golgi, lysosome, mitochondrion, nucleus, plasm
membrane, and peroxisome.

Cellular location Number of sequences

Cytoplasm 1945
ER 607
Extracellular 4410
Golgi 184
Lysosome 163
Mitochondrion 1220
Nucleus 2940
Plasma membrane 111
Peroxisome 108
Total 11688

Table 1: The number of proteins of each cellular locations in
the data set.

4.2 Evaluation

The performance of our prediction system was evaluated us-
ing the 5-fold cross-validation. To measure the performance,
sensitivity, specificity and Matthew’s correlation coefficient
(MCC) and overall accuracy were calculated using the follow-
ing equations:

Sensitivity(i) = %, (10)
Specificity(i) = ﬁ%}m, (11)
vcc( - 200 ;ii-’f"’f“"” -
k .
Overall accuracy = Z%p(l) (13)
where
de(i) = (tp(i) + fn (7)) (tp(i) + fp(&)) (tn () + fp(s)) (tn (i) +fn(i)()1 ,4)

and N is the total number of sequences, k is the number of
class, tp(i) (true positive) is the number of correctly predicted

3http://www.cs.ualberta.ca/~bioinfo/PA/Subcellular/experiments/Extract
Data_42_7.html
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sequences of class i, tn(i) (true negative) is the number of cor-
rectly predicted sequences which is not in class i, fp(i) (false
positive) is the number of over predicted sequences of class
i, and fn(i) (false negative) is the number of under predicted
sequences of class i.

4.3 Results

The performance of all the feature extraction methods is
shown in Table 3. To select the appropriate parameter val-
ues, we tested various values of the RBF kernel parameter
v and the regularization parameter C via the 5-fold cross-
validation. The N-terminal profile HMM based prediction
method (Y= 0.003 and C = 10) showed the overall accuracy
of 83.62%. In the case of the N-terminal Needleman-Wunsch
algorithm based method (y =2 and C = 100), the prediction
accuracy reached 83.25% which is slightly lower that that of
the profile HMM based method. The Smith-Waterman algo-
rithm based method (y= 80 and C = 10) showed the prediction
accuracy of 83.23%. The overall accuracy of dipeptide com-
position (Y = 170 and C = 10) and physico-chemical proper-
ties (Y =4 and C = 10) based methods reached 85.82% and
82.29%, respectively. To construct an SVM ensemble from
the collection of the separately trained SVM classifiers, we
tested four different aggregation methods based on the ma-
jority voting. In the case of the weighted majority voting, we
used three different criteria (sensitivity, specificity, and MCC),
for the weight W (k, j) in Eqs. 9. Table 2 shows that the overall
accuracy of the specificity based majority voting is the high-
est. Using the specificity based majority voting, we devel-
oped various SVM ensembles by changing the combination
of the five SVM classifiers. The first SVM ensemble (ensem-
ble 1) was constructed by combining the three SVM classifiers
based on the pairwise sequence alignment (N-terminal profile
HMM model, N-terminal Needleman-Wunsch algorithm, and
full sequence Smith-Waterman algorithm). The overall accu-
racy of the ensemble 1 reached 86.17%, which was higher
than that of any individual SVM classifier. The second SVM
ensemble (ensemble 2) was developed based on the dipeptide
composition and physico-chemical properties. The prediction
accuracy of the ensemble 2 is slightly lower than the ensem-
ble 1, and even worse than the dipeptide composition based
method. To compare the effect of the two composition based
features on the ensemble 1, we built two different ensembles
from the ensemble 1 (ensemble 3 and 4). As shown in Table
3, the dipeptide composition based feature gives much higher
effect on the performance of the constructed ensemble than
the physico-chemical properties based feature. Finally, the
SVM ensemble combining all the five SVM classifiers (en-
semble 5) showed the overall accuracy of 88.53%. The predic-
tion accuracy of our developed SVM ensemble is nearly 10%
higher than the previous methods relying solely on amino acid
sequence properties [16]. However, it is less meaningful to
compare the prediction accuracy directly because the data sets
are different. Comparing with the ontology-based approach,
whose accuracy is about 4% higher than our method, is also
unfair since the ontology-based methods use various extra in-
formation extracted from ontological labels [4].

Table 4 shows that the location of targeting information
has a strong influence on the average sensitivity of the N-

terminal and full sequence based feature extraction methods.
The proteins targeted to extracellular, mitochondrion, and nu-
cleus were predicted by the N-terminal based methods with
higher accuracy. This result, in the case of nuclear proteins,
are not well matched with the fact that the nuclear localization
signals can be located anywhere. But, from this result, we
could logically assume that most nuclear localization signals
are located at the N-terminus. For the proteins whose target-
ing information are not restricted to the N-terminal region, the
full sequence based methods showed better sensitivity.

Voting scheme Overall accuracy

Unweighted majority voting 0.8842
Weighted majority voting (sensitivity) 0.8775
Weighted majority voting (MCC) 0.8813
Weighted majority voting (specificity) 0.8853

Table 2: A comparison of different majority voting schemes

Method Location  Specificity  Sensitivity MCC Accuracy
Cyt 0.8905 0.7064 0.7548
ER 0.9485 0.6985 0.8046
Ensemble 1 Ext 0.8717 0.9780 0.8668
(SW+NW+  Gol 0.9701 0.3533 0.5817
HMM) Lys 0.9667 0.3558 0.5832 0.8617
Mit 0.8885 0.8492 0.8516
Nuc 0.8062 0.9184 0.8054
Pla 0.9130 0.3784 0.5853
Per 0.9516 0.5463 0.7190
Cyt 0.8822 0.6776 0.7318
ER 0.8270 0.8666 0.8366
Ext 0.8482 0.9692 0.8374
Ensemble2  Gol 0.8830 0.4511 0.6267
(DC+PC) Lys 0.8872 0.7239 0.7985 0.8504
Mit 0.8701 0.7631 0.7222
Nuc 0.8311 0.8755 0.7964
Pla 09123 0.4685 0.6513
Per 0.9412 0.5926 0.7448
Cyt 0.8963 0.7064 0.7584
ER 0.9554 0.7414 0.8333
Ext 0.8649 0.9902 0.8711
Ensemble 3  Gol 1.0000 0.3587 0.5954
(SW+NW+  Lys 0.9848 0.3988 0.6235 0.8691
HMM+PC)  Mit 0.9181 0.8549 0.8715
Nuc 0.8253 0.9126 0.8166
Pla 0.9423 0.4414 0.6427
Per 0.9531 0.5648 0.7317
Cyt 0.8822 0.7548 0.7845
ER 0.9500 0.7512 0.8367
Ext 0.8756 0.9907 0.8822
Ensemble4  Gol 1.0000 0.3750 0.6090
(SW+NW+  Lys 0.9789 0.5706 0.7446 0.8815
HMM+DC) Mit 0.9373 0.8582 0.8842
Nuc 0.8483 0.9129 0.8345
Pla 0.9455 0.4685 0.6633
Per 0.9701 0.6019 0.7624
Cyt 0.8727 0.7578 0.7770
ER 0.9498 0.8105 0.8707
Ext 0.8844 0.9871 0.8876
Ensemble 5 Gol 0.9877 0.4348 0.6519
(SW+NW+  Lys 0.9798 0.5951 0.7610 0.8853
HMM+PC+  Mit 0.9342 0.8615 0.8844
DC) Nuc 0.8565 0.9116 0.8398
Pla 0.9474 0.4865 0.6767
Per 0.9706 0.6111 0.7684

Cyt: Cytoplasm, Ext: Extracellular, Gol: Golgi, Lys: Lysosome, Mit: Mitochon-
drion, Nuc: Nucleus, Pla: Plasma membrane, Per: Peroxisome, HMM: N-terminal pro-
file HMM model, NW: N-terminal Necdleman-Wunsch algorithm, SW: Full sequence
Smith-Waterman algorithm, PC: Full sequence physico-chemical properties, DC: Full
scquence dipeptide composition

Table 3: A comparison of the five different SVM ensembles
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Location Targeting info.  N-terminal  Full sequence
Cytoplasm No 0.6949 0.7554
ER ERS+a 0.6607 0.8094
Extracellular ERS 0.9530 0.9382
Golgi ERS+a 0.3233 0.4330
Lysosome ERS+a 0.3006 0.6728
Mitochondrion MS 0.7869 0.7681
Nucleus NLS 0.8977 0.8365
Plasma membrane ERS+a 0.3108 0.4535
Peroxisome PS 0.5093 0.5371

No: No targeting information, ERS: ER signal sequence (N-terminal), MS: Mitochon-
drion signal sequence (N-terminal), NLS: Nuclear localization signals (anywhere), PS:
Peroxisome signal scquence (N-terminal or C-terminal), : additional targeting infor-
mation, N-terminal: average scnsitivity of profile HMM and Needleman-Wunsch algo-
rithm, Full scquence: average sensitivity of dipeptide composition, physico-chemical

properties, and Smith-Watcrman algorithm

Table 4: A comparison of the average sensitiviy of the N-
terminal and full sequence based feature extraction methods
with the targeting information. '

S CONCLUDING REMARKS

In this paper we have proposed various feature extraction
methods based solely on amino acid sequence properties for
prediction of subcellular localization. Taking into account the
improved prediction performance, we conclude that our fea-
ture extraction methods using pairwise sequence alignment
are well fitted to this classification problem. From the compar-
ative study of the performance of the several SVM ensembles,
we have shown that the performance of the feature extrac-
tion methods based on pairwise sequence alignment is signif-
icantly improved by combining the composition based meth-
ods. By comparing the average sensitivity of the N-terminal
and full sequence based methods, we could get the biologi-
cal insight on the location of targeting information. There are,
however, a main problem that remain to be explored. In the
case of proteins whose targeting information is not restricted
to the N-terminal region, the sensitivity is considerably low.
Therefore, more research is needed to resolve this low sensi-
tivity problem. We hope this study will serve as a platform
from which studies on developing feature extraction methods
based on amino acid sequence property may be undertaken
with greater depth and specificity.
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