• Title/Summary/Keyword: Feature Distribution

Search Result 978, Processing Time 0.024 seconds

Approximation of the Distribution Function for the Number of Innovation Activities Using a Mixture Model (기술혁신 횟수의 분포함수 추정 -혼합모형을 적용하여-)

  • Yoo Seung-Hoon;Park Doo-Ho
    • Journal of Korea Technology Innovation Society
    • /
    • v.8 no.3
    • /
    • pp.887-910
    • /
    • 2005
  • This paper attempts to approximate the distribution function for the number of innovation activities (NIA). To this end, the dataset of 2002 Korean Innovation Survey (KIS 2002) published by Science and Technology Policy Institute is used. To deal with zero NTI values given by a considerable number of firms in the KIS 2002 survey, a mixture model of distributions for NIA is applied. The NIA is specified as a mixture of two distributions, one with a point mass at zero and the other with full support on the positive half of the real line. The model was empirically verified for the KIS 2002 data. The mixture model can easily capture the common bimodality feature of the NIA distribution. In addition, when covariates were added to the mixture model, it was found that the probability that a firm has zero NIA significantly varies with some variables.

  • PDF

Properties of Partial Discharge accompanying with Electrical Tree in LDPE (저밀도 폴리에틸렌에서 전기트리에 수반되는 부분방전의 특성)

  • 이광우;박영국;강성화;장동욱;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.234-238
    • /
    • 1999
  • The correlation between shape of electrical trees and partial discharge(PD) pulses in low density polyethylene(LDPE) were discussed. We observed growth feature of electrical tree by using optical microscope. On the basis of experimental results of measurements of trees occurring in the needle-plane arrangement with needle shape void and without needle shape void , statistical quantities are derived, which are relevant to PD pulse amplitude and phase. The PD quantities detected by partial discharge detector. we were analyzed q-n distribution pattern and $\psi$ -q-n distribution pattern. In this experiment, electrical trees in the needle-plane arrangement with needle shape void propagated branch type tree and in the needle-plane arrangement without needle shape void propagated bush type tree

  • PDF

Tropospheric Ozone Retrieval Algorithm Based on the TOMS Scanning Geometry

  • Kim, Jae-Hwan;Na, Sun-Mi;Newchurch, M.J.
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.1
    • /
    • pp.11-19
    • /
    • 2003
  • This paper applies the Scan-Angle Method (SAM) to the Total Ozone Mapping Spectrometer (TOMS) aboard Earth Probe (EP) satellite for determining tropospheric ozone based on TOMS scan geometry. In the northern tropical Africa burning season, the distribution of the SAM-derived tropospheric ozone presents a tropospheric ozone enhancement related to biomass burning. This distribution is consistent with that of fire counts observed from Along Track Scanning Radiometer (ATSR) and that of carbon monoxide, the tropospheric ozone precursor, observed from Measurements of Pollution In The Troposphere (MOPITI). However, this feature is not shown in the distribution of tropospheric ozone derived from other TOMS-based algorithms for the northern burning season. In the high latitudes, the influence of pollution in the SAM results is seen over the northern continents in agreement with carbon monoxide for northern summer when the dynamical activity is weak in the northern hemisphere.

Performance Improvement of Speaker Recognition by MCE-based Score Combination of Multiple Feature Parameters (MCE기반의 다중 특징 파라미터 스코어의 결합을 통한 화자인식 성능 향상)

  • Kang, Ji Hoon;Kim, Bo Ram;Kim, Kyu Young;Lee, Sang Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.679-686
    • /
    • 2020
  • In this thesis, an enhanced method for the feature extraction of vocal source signals and score combination using an MCE-Based weight estimation of the score of multiple feature vectors are proposed for the performance improvement of speaker recognition systems. The proposed feature vector is composed of perceptual linear predictive cepstral coefficients, skewness, and kurtosis extracted with lowpass filtered glottal flow signals to eliminate the flat spectrum region, which is a meaningless information section. The proposed feature was used to improve the conventional speaker recognition system utilizing the mel-frequency cepstral coefficients and the perceptual linear predictive cepstral coefficients extracted with the speech signals and Gaussian mixture models. In addition, to increase the reliability of the estimated scores, instead of estimating the weight using the probability distribution of the convectional score, the scores evaluated by the conventional vocal tract, and the proposed feature are fused by the MCE-Based score combination method to find the optimal speaker. The experimental results showed that the proposed feature vectors contained valid information to recognize the speaker. In addition, when speaker recognition is performed by combining the MCE-based multiple feature parameter scores, the recognition system outperformed the conventional one, particularly in low Gaussian mixture cases.

Cepstral Distance and Log-Energy Based Silence Feature Normalization for Robust Speech Recognition (강인한 음성인식을 위한 켑스트럼 거리와 로그 에너지 기반 묵음 특징 정규화)

  • Shen, Guang-Hu;Chung, Hyun-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.278-285
    • /
    • 2010
  • The difference between training and test environments is one of the major performance degradation factors in noisy speech recognition and many silence feature normalization methods were proposed to solve this inconsistency. Conventional silence feature normalization method represents higher classification performance in higher SNR, but it has a problem of performance degradation in low SNR due to the low accuracy of speech/silence classification. On the other hand, cepstral distance represents well the characteristic distribution of speech/silence (or noise) in low SNR. In this paper, we propose a Cepstral distance and Log-energy based Silence Feature Normalization (CLSFN) method which uses both log-energy and cepstral euclidean distance to classify speech/silence for better performance. Because the proposed method reflects both the merit of log energy being less affected with noise in high SNR and the merit of cepstral distance having high discrimination accuracy for speech/silence classification in low SNR, the classification accuracy will be considered to be improved. The experimental results showed that our proposed CLSFN presented the improved recognition performances comparing with the conventional SFN-I/II and CSFN methods in all kinds of noisy environments.

Voice Recognition Performance Improvement using a convergence of Voice Energy Distribution Process and Parameter (음성 에너지 분포 처리와 에너지 파라미터를 융합한 음성 인식 성능 향상)

  • Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.13 no.10
    • /
    • pp.313-318
    • /
    • 2015
  • A traditional speech enhancement methods distort the sound spectrum generated according to estimation of the remaining noise, or invalid noise is a problem of lowering the speech recognition performance. In this paper, we propose a speech detection method that convergence the sound energy distribution process and sound energy parameters. The proposed method was used to receive properties reduce the influence of noise to maximize voice energy. In addition, the smaller value from the feature parameters of the speech signal The log energy features of the interval having a more of the log energy value relative to the region having a large energy similar to the log energy feature of the size of the voice signal containing the noise which reducing the mismatch of the training and the recognition environment recognition experiments Results confirmed that the improved recognition performance are checked compared to the conventional method. Car noise environment of Pause Hit Rate is in the 0dB and 5dB lower SNR region showed an accuracy of 97.1% and 97.3% in the high SNR region 10dB and 15dB 98.3%, showed an accuracy of 98.6%.

Optical Properties of Self-assembled InAs Quantum Dots with Bimodal Site Distribution (이중 크기분포를 가지는 자발형성 InAs 양자점의 광특성 평가)

  • Jung, S.I.;Yeo, H.Y.;Yun, I.;Han, I.K.;Lee, J.I.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.3
    • /
    • pp.308-313
    • /
    • 2006
  • We report a photoluminescence (PL) study on the growth process of self-assembled InAs quantum dots (QDs) under the various growth conditions. Distinctive double-peak feature was observed in the PL spectra of the QD samples grown at the relatively high substrate temperature. From the excitation power-dependent PL and the temperature-dependent PL measurements, the double-peak feature is associated with the ground state transitions from InAs QDs with two different size branches. In addition, the variation in the bimodal size distribution of the QD ensembles with different InAs coverage is demonstrated.

PPNC: Privacy Preserving Scheme for Random Linear Network Coding in Smart Grid

  • He, Shiming;Zeng, Weini;Xie, Kun;Yang, Hongming;Lai, Mingyong;Su, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1510-1532
    • /
    • 2017
  • In smart grid, privacy implications to individuals and their families are an important issue because of the fine-grained usage data collection. Wireless communications are utilized by many utility companies to obtain information. Network coding is exploited in smart grids, to enhance network performance in terms of throughput, delay, robustness, and energy consumption. However, random linear network coding introduces a new challenge for privacy preserving due to the encoding of data and updating of coefficients in forwarder nodes. We propose a distributed privacy preserving scheme for random linear network coding in smart grid that considers the converged flows character of the smart grid and exploits a homomorphic encryption function to decrease the complexities in the forwarder node. It offers a data confidentiality privacy preserving feature, which can efficiently thwart traffic analysis. The data of the packet is encrypted and the tag of the packet is encrypted by a homomorphic encryption function. The forwarder node random linearly codes the encrypted data and directly processes the cryptotext tags based on the homomorphism feature. Extensive security analysis and performance evaluations demonstrate the validity and efficiency of the proposed scheme.

Image Retrieval Using a Composite of MPEG-7 Visual Descriptors (MPEG-7 디스크립터들의 조합을 이용한 영상 검색)

  • 강희범;원치선
    • Journal of Broadcast Engineering
    • /
    • v.8 no.1
    • /
    • pp.91-100
    • /
    • 2003
  • In this paper, to improve the retrieval Performance, an efficient combination of the MPEG-7 visual descriptors, such as the edge histogram descriptor (EHD), the color layout descriptor (CLD), and the homogeneous texture descriptor (HTD), is proposed in the framework of the relevance feedback approach. The EHD represents spatial distribution of edges in local image regions and it is considered as an important feature to represent the content of the image. The CLD specifies spatial distribution of colors and is widely used in image retrieval due to its simplicity and fast operation speed. The HTD describes precise statistical distribution of the image texture. Both the feature vector for the query image and the weighting factors among the combined descriptors are adaptively determined during the relevance feedback. Experimental results show that the proposed method improves the retrieval performance significantly tot natural images.

A Method to Improve the Performance of Adaboost Algorithm by Using Mixed Weak Classifier (혼합 약한 분류기를 이용한 AdaBoost 알고리즘의 성능 개선 방법)

  • Kim, Jeong-Hyun;Teng, Zhu;Kim, Jin-Young;Kang, Dong-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.457-464
    • /
    • 2009
  • The weak classifier of AdaBoost algorithm is a central classification element that uses a single criterion separating positive and negative learning candidates. Finding the best criterion to separate two feature distributions influences learning capacity of the algorithm. A common way to classify the distributions is to use the mean value of the features. However, positive and negative distributions of Haar-like feature as an image descriptor are hard to classify by a single threshold. The poor classification ability of the single threshold also increases the number of boosting operations, and finally results in a poor classifier. This paper proposes a weak classifier that uses multiple criterions by adding a probabilistic criterion of the positive candidate distribution with the conventional mean classifier: the positive distribution has low variation and the values are closer to the mean while the negative distribution has large variation and values are widely spread. The difference in the variance for the positive and negative distributions is used as an additional criterion. In the learning procedure, we use a new classifier that provides a better classifier between them by selective switching between the mean and standard deviation. We call this new type of combined classifier the "Mixed Weak Classifier". The proposed weak classifier is more robust than the mean classifier alone and decreases the number of boosting operations to be converged.