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Abstract 
 

In smart grid, privacy implications to individuals and their families are an important issue 
because of the fine-grained usage data collection. Wireless communications are utilized by 
many utility companies to obtain information. Network coding is exploited in smart grids, to 
enhance network performance in terms of throughput, delay, robustness, and energy 
consumption. However, random linear network coding introduces a new challenge for privacy 
preserving due to the encoding of data and updating of coefficients in forwarder nodes. We 
propose a distributed privacy preserving scheme for random linear network coding in smart 
grid that considers the converged flows character of the smart grid and exploits a 
homomorphic encryption function to decrease the complexities in the forwarder node. It offers 
a data confidentiality privacy preserving feature, which can efficiently thwart traffic analysis. 
The data of the packet is encrypted and the tag of the packet is encrypted by a homomorphic 
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encryption function. The forwarder node random linearly codes the encrypted data and 
directly processes the cryptotext tags based on the homomorphism feature. Extensive security 
analysis and performance evaluations demonstrate the validity and efficiency of the proposed 
scheme. 
 
 
Keywords: Privacy preserving, network coding, smart grid, homomorphic encryption 
function, random linear network coding 
 

1. Introduction 

With the introduction of information and communication technologies, the smart grid (SG) 
[1] allows for a two-way flow of information, automation as well as distributed intelligence 
over the grid. Several SG communication technologies have been proposed [2]. They can be 
broadly classified in three categories: power line communication (PLC), cable communication 
(copper or optical fiber), and wireless communication (ad hoc, mesh, and cellular 
architectures). Given that cable communication involves the development of a dedicated 
infrastructure with high capital costs, PLC and wireless communications are considered by 
many utility companies as the most promising alternatives [3]. Nevertheless, practical issues 
pertaining to these technologies are currently delaying the large-scale deployment of smart 
meters in distribution systems. In particular, PLC techniques may fail to connect all 
households (or substations) of the grid because of the strong attenuation of the communication 
signal [4]. Furthermore, interference is a salient issue for PLC in the distribution grids, as the 
spectrum is unregulated [5], [6]. With regard to wireless communication, the main challenges 
are related to medium characteristics of the transmission, including signal fading, noise, and 
path loss [7]. In fact, studies on advanced metering infrastructures have highlighted that both 
technologies suffer a lack of reliability because the information loss often exceeds 1% [7], [8], 
even after employing reliable communication methods. 

Researchers have mainly focused on network coding (NC) and random linear network 
coding to address this bottleneck  and enhance network performance in terms of throughput, 
delay, robustness, and energy consumption in SG [9]–[14]. The wireless communication 
strategy relies on accessible transmission mediums and is thus subject to security issues, 
including potential malicious attacks [15] and the provision of privacy guarantees [16]. In SG, 
privacy implications to individuals and their families are important because of the fine-grained 
usage data collection. For example, smart meters send their own data to a base station (BS), 
also called the sink, to gather data. These smart metering data may reveal highly accurate and 
real-time home appliance energy loads, which may be used to deduce the specific human 
activities occurring inside the houses. Public outcry about privacy has led to the banning of 
smart meters in North American cities [17]. Similarly, a planned mandatory deployment of 
smart meters in the Netherlands was recently derailed. Where smart meters are still deployed, 
users must now consent to opt in voluntarily.  

Users will certainly not opt in if the privacy implications of doing so remain unclear. 
Several technologies have been proposed for privacy preserving: data encryption [18], [19], 
data distorting [19], [20] and battery-based load hiding (BLH) [20], [21].  

However, random linear network coding introduces a new challenge for privacy preserving 
due to the encoding of data and updating of coefficients in forwarder nodes. In random linear 
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network coding, each coded packet contains the coefficients of the original data (named tag) 
and coded data (named message content). If we only apply end-to-end encryption on data and 
perform network coding on the encrypted data, then the coefficients will be public, and anyone 
will be able to linearly analyze the data and perhaps obtain the original encrypted data. If we 
apply end-to-end encryption on both the data and coefficients and perform network coding on 
the encrypted data, then the forwarder node will be unable to update the encrypted coefficients. 
If we apply end-to-end encryption on data and link-to-link encryption on coefficients and 
perform network coding on the encrypted data, then the coefficients encryption loses 
efficiency, because the forwarder node needs to decrypt the coefficients, update the 
coefficients and encrypt the coefficients again before forwarding it. 

Several researches [9], [10], [22], [23] have attempted to improve privacy for NC. However, 
[9] and [10] propose a central scheme for single flow from one source to one destination that is 
unsuitable for large-scale distributed SG. [22] and [23] are designed for multicast flow, do not 
consider the converged flows character of SG, and are unsuitable for SG with small packets 
and numerous nodes. Therefore, the privacy preserving for random linear network coding in 
SG is still an open problem. 

Therefore, to solve the problem, we propose a distributed privacy preserving scheme for 
random linear network coding in SG, which considers the converged flows character of the SG 
and exploits a homomorphic encryption function to decrease the complexity in the forwarder 
node. The data and coefficients of the packet are end-to-end encrypted, and the coefficients of 
the packet are especially encrypted by the homomorphic encryption function. The forwarder 
node random linearly codes the encrypted data and directly processes the cryptotext 
coefficients based on the homomorphism feature. The proposed scheme offers data 
confidentiality privacy preserving feature that can efficiently thwart traffic analysis. Extensive 
security analysis and performance evaluations demonstrate the validity and efficiency of the 
proposed scheme. We have made following contributions in the proposed scheme: 

• With the employment of the homomorphic encryption function, the confidentiality of 
smart meter readings transmitted by the network coding is effectively guaranteed, making it 
difficult for attackers to recover the plain text of smart meter readings. Given that only the sink 
knows the decryption key, the attackers still cannot decrypt the smart meter readings even if 
several forwarder nodes are compromised. Moreover, the coding/mixing feature of network 
coding can also be naturally exploited to satisfy the requirements of privacy preservation 
against traffic analysis. 
• Given the homomorphism of the homomorphic encryption function, the forwarder node 

random linearly codes the encrypted data and directly processes the cryptotext coefficients, 
without knowing the decryption keys or performing expensive decryption operations. 

• We have conducted extensive security analysis and performance evaluations. The security 
analysis demonstrates that the proposed scheme can resist attacks from both inside and outside 
the network. The performance evaluations on computational complexity demonstrate the 
efficiency of the proposed scheme.  
• We have compared our scheme with the other three schemes in terms of flow model, 

topology, attack, privacy features and computational overhead.  
The rest of this paper is organized as follows. Section 2 briefly reviews the related works. 

Section 3 states preliminaries about network coding and Boneh–Goh–Nissim cryptosystem. 
The system model is introduced in Section 4. Section 5 proposes the scheme. Section 6 
discusses security analysis and performance evaluations. Conclusions are drawn in Section 7. 
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2. Related Work 
Data privacy has attracted the interest of researchers from various fields, such as in cloud 
computing [24]-[28] and SG [29], [30]. In SG, several technologies have been proposed for 
privacy preserving, such as data encryption, data distorting and battery-based load hiding. 
Data encryption exploits keys between the user and the sink to encrypt packet for end-to-end 
privacy preserving. Differential privacy is originally proposed by Dwork et al. [31]–[33] as a 
privacy measure for database queries. The most common way to achieve differential privacy is 
through data distorting to add noise to the real query result. In battery-based load hiding, a 
battery is installed for each household and is smartly controlled to store and supply power to 
the appliances for hiding actual appliance loads from the outsiders. 

The existing data encryption obtains low efficiency with network coding because the 
forwarder nodes need to encode the data and update the coefficients before forwarding it. The 
privacy preserving scheme [34], [35] that we propose previously for data aggregation cannot 
work with network coding. Data distorting and battery-based load hiding focus on the 
collection process of the smart meter. We consider privacy technology in the transmission 
process after the collection that can work with any technology in the collection process of the 
smart meter. 

Our proposed scheme is a special data encryption method. Even though data encryption, 
data distorting and battery-based load hiding work in different phase of smart meter systems, 
the main advantages of our proposed scheme are that it can decrease the complexity for the 
forwarder node in SG with random linear network coding and improve the efficiency of 
privacy preserving scheme with the same privacy preserving . 

Several studies [9], [10], [22], [23] have been conducted privacy preserving in network 
coding. Hasen et al. [9], [10] develope an enhanced network coding technique for packet 
routing to hide the source, destination, path, traffic volume, and content information of the 
packets for the SG system. They introduce the concept of the sub-graph network for this 
purpose, using a subset of the sub-graphs to transfer the data to improve the energy 
consumption and system complexity. They eliminate the need to send coefficients of the 
network coding nodes to the receiver in the decoding process to save bandwidth. Their scheme 
maintaine multiple favorable privacy preserving metrics, such as anonymity, unlinkability, 
undetectability and unobservability for communications. Fan et al. [22], [23] propose a novel 
privacy preserving scheme against traffic analysis in network coding. With homomorphic 
encryption operation on coefficients, their schemes offer two significant privacy-preserving 
features, packet flow untraceability and message content confidentiality, to thwart the traffic 
analysis attacks efficiently. Moreover, the proposed scheme maintaine the random coding 
feature, and each sink could recover the source packets by inverting the coefficients with a 
very high probability.  

However, the schemes in [9], [10] are central and the topology of SG is pre-known and 
static which are not suitable for large scale distributed smart grid. The schemes in [22], [23] 
focus on traffic analysis and are designed for multicast flow which do not consider the 
converged flows of SG with small packets and numerous nodes in data collection. 

Therefore, the privacy preserving for random linear network coding in SGs is still an open 
problem that we have tried to solve in conference versions [36]. 
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3. Preliminaries 
In this section, we briefly recall the ideas of network coding [37] and Boneh–Goh–Nissim 
cryptosystem [38], which serve as the basis of the proposed scheme. 

3.1 Network coding 
The idea behind network coding is that forwarder nodes in the network can mix the packets 
through algebraic operations, breaking the traditional store-and-forward approach. In 
particular, random linear network coding (RLNC) [39], [40], [41] provides a fully distributed 
methodology for network coding whereby each node in the network independently and 
randomly selects a set of coefficients and uses them to form linear combinations of the data 
that it receives, as shown in Fig. 1.  

Consider an acyclic network G(V,E), where V is the node set and E is the edge set. We 
assume that the transmission data can be considered as a vector of the symbols and each 
symbol is an element of a finite field Fq. Consider a network scenario where a session 
comprises a set of sources S ⊆ V and a sink t V∈ . There are h nodes in source set S, where 
each node sends a symbol to sink t. 1,..., hx x  are the original symbols to be delivered from S to 
t. 
 

 
Fig. 1. Random linear network coding 

 
The original symbol can also be considered as a coded symbol. For source s, an original 

symbol is
1

h

s si i
i

y g x
=

=∑  , where ssg is 1, ( )sig i s≠ is set to zero, and ix s are original symbols’ 

form.  
In particular, we assume that the forwarder node v has received coded symbols of the 

1

h

k ki i
i

y g x
=

=∑  form. Let ' qy F∈ denote the outgoing symbol, which can be computed as a 

linear combination of the received coded symbols  of node v, i.e., 
1

'
j

k k
k

y yβ
=

=∑ , where kβ s are 

random numbers. The coefficient vector 1,..., jβ β =  β  is called local encoding vector 
(LEV).  
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By induction, the outgoing symbol y′ can be computed as a linear combination of the 

sources’ original symbols 1,..., hx x , i.e., 
1 1 1 1 1

' ( ) ( )
j j jh h

k k k ki i k ki i
k k i i k

y y g x g xβ β β
= = = = =

= = =∑ ∑ ∑ ∑ ∑ . The 

coefficients form a global encoding vector (GEV) [ ]1' ' ,..., 'hg g=g , which can be computed 
recursively as 

1
'

j

k k
k

β
=

=∑g g  ,                                                       (1) 

using the LEV 1,..., jβ β =  β , and [ ]1,...,k k khg g=g . 

Suppose that the sink t receives symbols 1' ,..., 'hy y , which can be expressed in terms of the 
source symbols as 
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where Gt is called global encoding matrix (GEM) and the ith row of Gt is the GEV associated 
with 'iy . The sink t can recover the h original symbols by inverting the matrix Gt and then 
applying the inverse to 1' ,..., 'hy y . 

In general, the data of each packet can be considered as a vector of symbols 

,1 ,' ' ,..., 't t t ly y =  y , where l is the length of data. By likewise grouping the source symbols 

into packets ,1 ,,...,i i i lx x x =   , the above algebraic relationships are carried over to the packets. 
To facilitate the decoding at the sinks, each packet should be tagged with its GEV 'g , which 
can be easily achieved by prefixing the ith source packet xi with the ith unit vector ui. Then, each 
packet is automatically tagged with the corresponding GEV, as 

  [ ] [ ] [ ]
1 1

' , ' , ' ,
j h

t t k k k ti i i
k i

gβ
= =

= =∑ ∑g y g y u x                                   (3) 

Therefore, each packet contains the GEV (named tag) and coded data (named message 
content), as shown in Fig. 1. The benefit of tags is that the GEVs can be found within the 
packets themselves, thus, the sink can compute Gt without knowing the network topology or 
packet-forwarding paths. Actually, the network can be dynamic, with nodes and edges being 
added or removed in an ad hoc way. The coding arguments can be time-varying and random. 
More recently, tunable sparse network coding is introduced in [42], where the coding is done 
at different levels of sparsity, i.e., more sparse at the beginning of transmission (coding 
coefficients mostly zero) and denser towards the end, while keeping the transmitted coded 
packets innovative with high probability. This scheme reduces the delay and decoding 
complexity. Our work is based on the tunable sparse network. 

3.2 Boneh–Goh–Nissim cryptosystem 
Several cryptosystems possess the homomorphic feature: Paillier [43] and Boneh-Goh-Nissim 
cryptosystems [38]. The Boneh–Goh–Nissim cryptosystem is a public key encryption scheme 
that is proposed by Boneh, Goh and Nissim in 2005 and can provide more homomorphic 
features than the Paillier cryptosystem. The Boneh–Goh–Nissim system has been widely used 
in many privacy-preserving applications because it can achieve several nice homomorphic 
properties. 
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Given the security parameter Zτ ∈ + , a bilinear-parameter generation algorithm ( )F τ  
outputs a tuple (p, q, G, G1, e), where p and q are distinct primes with | | | |p q τ= = , G and G1 
are two cyclic groups of order n = pq, and e: G × G → G1 is a bilinear map. 

The Boneh–Goh–Nissim encryption is comprised of three algorithms: key generation, 
encryption, and decryption, as follows. 

1) Key generation: Given the security parameter Zτ ∈ + , run ( )F τ  to obtain the tuple  (p, q, 
G, G1, e) as described above. Randomly chose two generators ,g x G∈  and set k = xq. Then k 
is a random generator of the subgroup of G of order p. The public key is PK = (n, G, G1, e, g, 
k). The private key is SK = p. 

2) Encryption: Given a message 0,1,...,m T∈  where T << q is the bound of the message 
space, choose a random number nr Z∈ . Then the ciphertext can be calculated as 

m rC g k G= ⋅ ∈ . 
3) Decryption: Given that the private key SK = p and the ciphertext C G∈ , first compute 

( ) ( )p m r p p mC g k g= ⋅ = . Let p
pg g= , then p m

pC g= . To recover m, it suffices to compute the 

discrete logarithm of m
pg . 

Note that when m is a short message, say m ≤ T for some small bound T, the decryption 
takes the expected time ( )O T  using the Pollards lambda method [44]. Note that decryption 
in this system takes polynomial time in the size of the message space T. 

The Boneh–Goh–Nissim cryptosystem has several nice homomorphic properties. It is 
additively homomorphic. For any ciphertexts 1 2,C C G∈  of messages 1 2, 0,1,...,m m T∈  with 
random numbers 1 2, nr r Z∈ , it satisfies the following homomorphic property. 

1 1 2 2 1 2 1 2( ) ( )
1 2 1 2( ) ( ) ( ) ( ) ( )m r m r m m r rHE m HE m g k g k g k HE m m+ +⋅ = = ⋅ = +⋅ ⋅ ⋅       (4) 

where HE(.) represents the Boneh–Goh–Nissim encryption function. Further, the following 
two equations can be easily derived. 

( ) ( )
( ) ( )i

t

t
i i

i i

HE t m HE m
HE t m HE m

⋅ =

=⋅∑ ∏                                               (5) 

4. System Model and Motivation 
In this section, we present the system model and the motivation of our work. 

4.1 System model 
There are different proposed definitions for the privacy. Bob Blakley defines privacy as “The 
ability to lie about yourself and get away with it” [45], or “The right to be left alone”. The latter 
definition has been adopted by NIST [46]. Pfitzmann and Hansen provided six features for the 
privacy [47] as follows: anonymity, unlinkability, undetectability, unobservability, 
pseudonymity, identity management. 

As shown in Fig. 2, the network is modeled as a graph represented by a set of source nodes 
(smart meter, secondary substations and households) and a sink. The sink is considered as the 
BS, in charge of data gathering, coordination, and control of the source nodes. The BS is aware 
of the number of online source nodes, and the network topology is multi-hop. The source 
nodes are responsible for gathering measurements and forwarding packets to subsystems 
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connected to them. Each source node uploads its data to the sink at constant frequency (e.g., 
every 15 min), which is a data collection period. We consider a reasonable clock 
synchronization (a few seconds drift is acceptable) of the BS and the source nodes to support 
the data collection period. Therefore, the flow model in SG is converged, in which multiple 
sources and a sink (BS) exist.  

We assume that all the nodes have the same performance capabilities in terms of processing 
and storage. Moreover, the links between the BS and the nodes are noisy and the signal can 
fade; thus, the data transmitted from the nodes to the BS and vice versa can be lost. Therefore, 
the BS obtains the data from the source nodes by random linear network coding. In a data 
collection period, the data packets from the different sources compose a round. On their way to 
the sink, the packets are coded with the other packets in the same round but from different 
sources. For example, each source node gathers measurement data and generates an original 
packet. The arrows represent the routing path. Node 2 sends its original packet to node 3. 
Nodes 1 and 4 send their original packets to node 5. After receiving the packet from node 2, 
node 3 generates a coded packet by Eq.(3) in sub-section 3.1 and sends the coded and its 
original packets to node 10. Similarly, node 5 generates two coded packets and sends the two 
coded and its original packets to node 10. Node 10 generates five new coded packets and sends 
them to the BS. The number of coded packets to generate at a forwarder node is equal to the 
number of received innovative packets. The processes of sub-networks of nodes 6, 7, 8, and 9 
are similar.  

The concept of downstream node is used, meaning a node that is closer to the sink than the 
local node. We intend the information to flow as waves towards the sink and compute the 
downstream nodes by using a secure, anonymous routing protocol [48]. 
 

 
Fig. 2. Smart grid network architecture 

 

4.2 Motivation 
Given the benefit of tags, random linear network coding can provide a fully distributed 
methodology for network coding. However, the tag in random linear network coding 
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introduces a new challenge for privacy preserving because of updating of tags and encoding of 
data in the forwarder nodes. 

Several direct privacy preserving solutions exists for random linear network coding by 
end-to-end encryption. 

First, we only apply end-to-end encryption on data and perform network coding on the 
encrypted data. The tag is public. Because of the convergence flow model the tag of packets 
from the source nodes must be a unit vector. It is easy to obtain the original encrypted data. For 
the forwarder nodes, according to the tag of each packet, they or the outsider attacker can 
linearly analyze the data and get the original encrypted data, thereby providing backdoors for 
traffic analysis. 

Second, we apply end-to-end encryption on both the data and the tag and perform network 
coding on the encrypted data. The forwarder node encodes the encrypted data to generate a 
new coded packet. The forwarder node needs to calculate the tag of the new packet by the LEV 
multiplied by the tags (GEVs) of the received packets according to Eq.(1). However, the tags 
are end-to-end encrypted. The forwarder node has only the encrypted tags and not the plain 
tags. The LEV and the encrypted tags of the received packets cannot compute the encrypted or 
plain tag of the new coded packet. This solution is unsuccessful because the forwarder node 
cannot correctly update the encrypted tag. 

Third, we apply end-to-end encryption on the data and link-to-link encryption on the tag and 
perform network coding on the encrypted data. The encryption obtains low efficiency because 
the forwarder node needs to decrypt, update, and encrypt the tag again before forwarding it. 

Therefore, to reduce the update complex of tag in the forwarder nodes is our main problem. 
The main challenge is to efficiently update the tag and maintain the secrecy of tag in the 
forwarder node. 

5. Privacy Preserving Scheme for Random Linear Network coding 
In this section, we first propose a scheme named privacy preserving scheme for random linear 
network coding (PPNC) and then take an example to illustrate its process. 

5.1 The detail of PPNC 
The network coding is used between IP and TCP layer [41]. Our scheme is designed to make 
sure the privacy for network coding. Therefore, our scheme is also used between IP and TCP 
layer. PPNC exploits the homomorphism of the homomorphic encryption function to handle 
the update of the tags in forwarder nodes.  

Three steps exist in PPNC: sending the packet, forwarding the packets, and decoding and 
decrypting the packets. Our scheme phases are as follows: 

 
Fig. 3. Setting tag and encryption at source node i 
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Algorithm 1. Sending the packet on node i 
Input:    The public key of node BS, BSPubK ;  
             The plain packet to be sent, ix ;               
             The homomorphic encryption function, ( )HE ⋅ ;  
             The encryption function, ( )E ⋅ ;  
Output: The sent packet with coded encrypted tag and data, ( , )i ig x ;  

th each value in  represents the coefficient of on

1. ( ){Data encryption}

2. (0, ,1, 0){The value set to one, }
3. ( ){Tag encryption}

4. ( , ) downstream node

e packe

{Sendi

t
BS

BS

i PubK i

i i

i PubK i

i i

x E x

g i g
g HE g

g x

←

←

←

→

 

ng encrypted tag and data}

 

 
1) Sending the packet: Each source node per data collection period sends only one packet. 

Both the tag and the data must be protected. As shown in Fig. 3, each node encrypts the data by 
the end-to-end encryption function with the public key of the BS. Then each node sets the 
coefficients of the packet on tag. Simply, the ith value is set to 1 for the packet of node i. In 
order to protect the coefficients information in the packet, we encrypt the tag by the end-to-end 
homomorphic encryption function with the public key of the BS. Finally, the encrypted tag 
and the encrypted data are sent, as shown in Algorithm 1. ( )HE ⋅ is the homomorphic 
encryption function, and ( )E ⋅  is the encryption function. 

2) Forwarding the packet: The arrival of a new packet triggers the forwarder node to 
generate a new coded packet and send it to the next-hop node according to the routing protocol. 
To do so, the forwarder node creates a random linear combination of the received coded 
packets and forwards it to the downstream node, as shown in Fig. 4. In Fig. 4, the forwarder 
node can generate different coded packets from one set of received packets ( 1 1,..., jy y − ) by 

different LEV( 1 1,..., jβ β − =  β ). Only the arrival of a new packet jy  triggers the forwarder 
node to generate a new coded packet, which means that the new coded packet includes the new 
arrived packet information, and its LEV is 1,..., jβ β =  β . 

 
Fig. 4. Coding and updating on tags at the forwarder node 
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Algorithm 2. Forwarding the packets on node i 
Input:    The received packets, 1 1( , )...( , )j jg y g y ;  
Output: The sent packet with new coded encrypted tag and data, ( ', ')g y ; 

1

1

1. for  
2.      encrypted

3. encrypted 

4. 
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g

k j

g
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β
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=

=

→

←

=

→

∑

∏
d data}

 

 
First, the forwarder node randomly chooses the LEV β  for the received packets. Second, it 

linearly encodes the encrypted data of all the received packets according to the LEV to 
generate the data 'y  of a new packet. Then it generates the encrypted tag 'g  of the new coded 
packet by the encrypted tags of the received packets according to Eq.(6). 

1

' k

j

k
k

g g β

=

=∏                                                                 (6) 

where the received packets are 1 1( , )...( , )j jg y g y ,  kg , ky is the encrypted tag and data of the 
received packet k, respectively. 
Theorem 1. The encrypted tag 'g  of the new coded packet can be calculated by Eq. (6) on the 
encrypted tags of the received packets. 

Proof. According to Eqs.(1) and (5), we can get that  

1

1 1

' ( ') ( )

( )

BS BS

k k

BS

j

PubK PubK k k
k

j j

PubK k k
k k

g HE g HE g

HE g gbb

b
=

= =

= = ⋅

= =

∑

∏ ∏
                           (7) 

Finally, the forwarder node sends the new packet with the encoded data 'y and the 
encrypted tag 'g to the downstream node, as shown in Algorithm 2. 

3) Decoding and decrypting the packets: As shown in Fig. 5, after the BS receives the 
packets, the BS utilizes its own homomorphic private key to decrypt the header to obtain tag of 
the packets. The BS discards non-innovative packets because they do not contain new 
information. After receiving the h innovative packets, the BS obtains the reverse value of the 
transfer matrix Gt, decodes the received packets by the transfer matrix, and obtains the 
encrypted original data. Finally, the BS obtains plain original data by the private key of BS, as 
shown in Algorithm 3. 

 
 

Fig. 5. Decoding and decrypting at sink node 
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Algorithm 3. Decoding and decrypting the packets 

Input:    The private key of node BS, BSPrvK ;  
             The matrix of received innovative packets with size of "1*h ",Y ;  
             The homomorphic decryption function, ( )HD ⋅ ;  
             The decryption function, ( )D ⋅ ;  
Output: The matrix of plain original packets, X ; 

th( , ){Received the encrypted packet}

( ){Tag decryption, 

1.  
2. for  do 
3.      transfer matrix

4. 
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 is the }
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5.2 An example 
We use the left sub-network of Fig. 2 as an example to illustrate the process of our approach 

(Algorithms 1 to 3).  Five source nodes and one sink node are present in the Fig. 6. We assume 
that the data of the source is same as the id of source node, that is, source node i’s plain packet 
is ((0,..,1,..0), i). According to Algorithm 1, the sent packet is ( ((0, ,1, 0)), ( ))

BS BSPubK PubKHE E i  . 
The arrows are the selected routing path. That is, nodes 1 and 4 send packets to node 5, node 2 
sends packets to node 3, nodes 3 and 5 send packets to node 10, and node 10 sends packets to 
BS.  

According to Algorithm 2, after node 3 receives the packet from node 2, node 3 stores its 
packet ( ((0,0,1,0,0)), (3))

BS BSPubK PubKHE E and the received packet from node 2 
( ((0,1,0,0,0)), (2))

BS BSPubK PubKHE E .  Then node 3 random chooses LEV [ ]1,1=β  and generates a 
new coded packet ( ((0,1,0,0,0)) ((0,0,1,0,0)), (2) (3))

BS BS BS BSPubK PubK PubK PubKHE HE E E+  to forward to 
node 10.  At the same time, node 3 sends its packet to node 10. 

Similarly, after node 5 receives the packet from nodes 1 and 4, node 5 stores its packet 
( ((0,0,0,0,1)), (5))

BS BSPubK PubKHE E and the received packets from node 1 and 4 
( ((1,0,0,0,0)), (1))

BS BSPubK PubKHE E , ( ((0,0,0,1,0)), (4))
BS BSPubK PubKHE E . Then node 5 random 

chooses two LEVs [ ] [ ]1 21,1,1 , 1, 2,3= =β β  and generates two new coded packets 
( ((1,0,0,0,0)) ((0,0,0,1,0)) ((0,0,0,0,1)), (1) (4) (5))

BS BS BS BS BS BSPubK PubK PubK PubK PubK PubKHE HE HE E E E+ + , 
2 3( ((1,0,0,0,0)) ((0,0,0,1,0)) ((0,0,0,0,1)), (1) 2 (4) 3 (5))

BS BS BS BS BS BSPubK PubK PubK PubK PubK PubKHE HE HE E E E+ +

to forward to node 10.  At the same time, node 5 sends its packet to node 10. 
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Fig. 6. An example of the process of our approach 

 
Then node 10 receives five coded packets. According to Algorithm 2, node 10 needs to 

generate five new coded packets to BS. For example, node 10 randomly chooses a LEV 
[ ]1 1, 2,3, 4,5=β . The data of the first new coded packet is 
( (3)) 2 (2) (3)) 3( (5)) 4( (1) (4) (5))

5( (1) 2 (4) 3 (5))

9 (1) 2 (2) 5 (3) 14 (4) 22 ( ))

(

5

BS BS BS BS BS BS BS

BS BS BS

BS BS BS BS BS

PubK PubK PubK PubK PubK PubK PubK

PubK PubK PubK

PubK PubK PubK PubK PubK

E E E E E E E

E E E

E E E E E

+ + + + + +

+ + +

= + + + +

, 

and the tag of  the first new coded packet is 
2 3

4

2

( ((0,0,1,0,0)))* ((0,1,0,0,0)) ((0,0,1,0,0))) *( ((0,0,0,0,1)))

*( ((1,0,0,0,0)) ((0,0,0,1,0)) ((0,0,0,0,1)))

*( ((1,0,0,0,0)) ((0,0,0

(
BS BS BS BS

BS BS BS

BS BS

PubK PubK PubK PubK

PubK PubK PubK

PubK PubK

HE HE HE HE

HE HE HE

HE HE 3 5

9 2 5 14 22

,1,0)) ((0,0,0,0,1)))

((1,0,0,0,0)) ((0,1,0,0,0)) ((0,0,1,0,0)) ((0,0,0,1,0)) ((0,0,0,0,1))
BS

BS BS BS BS BS

PubK

PubK PubK PubK PubK PubK

HE

HE HE HE HE HE=

. 

The LEVs of the other four coded packets are [ ]2 0,1,0,0,0=β , [ ]3 0,0,1,0,0=β , [ ]4 0,0,0,1,0=β , 
and [ ]5 0,0,0,0,1=β , respectively. 

According to Algorithm 3, after the BS receives five innovative coded packets, the BS 
decrypts the header to obtain the tag of the packets. The tag of the first received coded packet 
is (9, 2, 5, 14, 22). The tags of other four coded packets are (0, 1, 1, 0, 0), (0, 0, 0, 0, 1), (1, 0, 0, 
1, 1), and (1, 0, 0, 2, 3), respectively. The transfer matrix Gt is  

9 2 5 14 22
0 1  1  0   0 
0 0 0  0   1
1 0  0  1   1
1 0  0  2  3

 
 
 
 
 
 
  

. 
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The BS performs Gaussian elimination to recover the encrypted original 
data (1)

BSPubKE , (2)
BSPubKE , (3)

BSPubKE , (4)
BSPubKE , and (5)

BSPubKE . Finally, the BS decrypts the 
encrypted data to obtain the original data.  

6. Security analyses 
In this section, in order to demonstrate the properties of the proposed scheme, we present an 
analysis from the privacy point of view and estimate the computational and communication 
overhead. 

6.1 Privacy performance analysis 
The attackers may launch various security attacks against the SG networks. However, these 
attacks have no one-for-all solution. Therefore, this paper separately investigates such attacks 
and assumes that the attackers aim to obtain private data. We refer to the Dolev–Yao model 
[49] to design our two adversary models, which include outside and inside attackers as shown 
in Fig. 7, in the case of the SG system. We also discuss the replay attack and 
man-in-the-middle attack. For the six feature for privacy defined in section 4.1, in our paper, 
we focus on the four former features. 

1) Outside attacker: An outside attacker is an external party and is not an entity of the 
system. An outside attacker can be considered as a global passive eavesdropper who has the 
ability to observe all network links. The attacker receives all of the packets and examines the 
tags and data entering into a node (smart meter) and departing from the node. Furthermore, 
even if messages are encrypted in an end-to-end manner, it is still possible for a global outside 
attacker to trace packets by analyzing and comparing the ciphertext message. For instance, the 
attacker knows the public keys of the entire parties and has detailed knowledge about network 
topology. Moreover, the attacker knows the detail design of our proposed privacy mechanism 
shown by Algorithms 1-3. The goal of the outside attacker is to obtain information about the 
original packet. 
 

 
 

Fig. 7. Attack model: outside and inside attackers. 
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Fig. 8. Privacy enhancement in terms of the computational complexity 

 
Discussion: For a global outside attacker, it is still possible to trace the packets by analyzing 

and comparing the ciphertext message, even if messages are encrypted in an end-to-end 
manner and the encrypted message remains the same during its forwarding. The mixing 
feature of network coding can resist the data correlation used in traffic analysis 
(undetectability). In our scheme, the encrypted message is changed after getting through every 
node; thus, it is hard to trace the path or to find the source of a message (unlinkability, 
anonymity, which yields to unobservability). With the assistance of the homomorphic 
encryption function, the tags are kept confidential to eavesdroppers, making it difficult for 
attackers to perform linear analysis on tags. In addition, homomorphic encryption function 
keeps the random coding feature, making linear analysis on data almost computationally 
impossible. Let the number of intercepted packets be w. The computational complexity for 
attackers to examine if a packet is a linear combination of h messages is 3( )O h hl+ in terms of 
multiplication, where l is the length of the data. Thus, the computational complexity to analyze 
the intercepted w packets is 3( ( ))h

wO C h hl+ , which increases exponentially with w, as shown 
in Fig. 8, where h = 5 and l = 100. 

2) Inside attacker: The inside attacker is an internal party and may compromise several 
forwarder nodes. The malicious node is already authenticated and receives the system 
parameters and its own private key; thus, the inside attacker possess these information. The 
malicious node is under control of the attacker and performs Algorithm 2. Link-to-link 
encryption is vulnerable to an inside attacker because they may already obtain the decryption 
keys and reveal plain text message. The goal of the inside attacker is to gain access to the 
information of the neighbor nodes by receiving their data for relay. 

Discussion: Having access to a malicious node only improves the attacker situation on 
modifying its data. The forwarder nodes only mix the packets and do not perform any 
encryption and decryption. Consequently, his behave is almost the same as the previous 
scenario. 

3) Replay attack: A valid data transmission is maliciously repeated or delayed. This is 
carried out either by the sources or by an adversary who intercepts the data and re-transmits it, 
possibly as part of a masquerade attack by the IP packet substitution. 

Discussion: When a packet is repeated, the forwarder node generates more than one new 
coded packet. The BS may receive more than h packets, but includes non-innovative packets. 
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The BS discards non-innovative packets because they do not contain new information.  
Therefore, after the BS receives h innovative packets, it can obtain the information by 
Algorithm 3. When a packet is delayed, the BS needs to wait the delay for receiving h 
innovative packets. 

4) Man-in-the-middle attack (MITM): The attacker secretly relays and possibly alters the 
communication between two parties who believe they are directly communicating with each 
other. 

Discussion: In our scheme, we use the end-to-end encryption for the tag and the data of 
packet. All cryptographic systems that are secure against MITM attack require mutual 
authentication. How to authenticate is beyond the scope of our paper. To fight MITM attack, 
we can authenticate before the key distribution of the tag homomorphic encryption and data 
encryption.  

6.2 Computational Overhead 
The computational overhead of the proposed scheme can be investigated from three aspects, 
including source node, forwarder node and sink node. Since the computational complexity of 
the proposed scheme is closely involved with the specific homomorphic encryption algorithm 
in the following analysis, we will take the Boneh–Goh–Nissim cryptosystem as the encryption 
method when necessary. Our scheme can work with any encryption algorithms of the data 
encryption, such as AES [50]. Therefore, in the overhead analysis we ignore the encryption 
and decryption of the data and focus on tag homomorphic encryption, decryption, and coding 
computation of the data and the tag. 

1) Source node overhead: For transmitting the smart meter reading, the source node i needs 
one encryption operation. According to the Boneh–Goh–Nissim cryptosystem, every 
encryption operation requires 2 exponentiations and 1 multiplication operation. Therefore, the 
computational complexity is (log )O n  in terms of the multiplication operations. 

2) Forwarder node overhead: In forwarder nodes, linear transformation on the elements of 
GEVs can only be performed by manipulating the ciphertext of these elements because 
forwarder nodes have no knowledge of the decryption keys. According to Eq.(6), the 
computational complexity of producing one element in new GEVs is h exponentiations and h 
− 1 multiplications on the ciphertext, which is ( log )O h n in terms of multiplications together. 
Thus, the computational complexity is 2( log )O h n  for a GEV and 3( log )O h n for a GEM with 
h GEVs in terms of multiplication operations. 

3) Sink node overhead: After receiving a packet, the sink can decrypt the elements of the 
GEV in the tag. According to the Boneh–Goh–Nissim cryptosystem, decrypting an element 
takes an expected time ( )O T using the Pollards lambda method. Therefore, the 
computational complexity of decrypting a GEV is ( )O h T in terms of the multiplication 
operations.  

After receiving h packets, which requires 2( )O h T  multiplication operations to decrypt 
the h GEVs, the sink node can start to check the linear dependence of the GEVs. A method is 
the Gaussian elimination algorithm, which requires 3( )O h multiplication operations.  

If h GEVs are linearly independent or innovative, we can further derive the inverse of the 
corresponding GEM. Based on Gaussian elimination, the computational complexity to find the 
inverse of a matrix is 3( )O h in terms of multiplication operations. With the inverse of a matrix, 
the sink can recover the encrypted original data by decoding the encoded data. The 
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computational complexity for the recovery is 2( )O h l  in terms of multiplication, where l is the 
length of the data.  

In summary, the computational complexity for the sink to decode h messages is 
2( ( ))O h T h l+ +  in terms of multiplication operations, as shown in Fig. 9 where l = 100 and 

T = 200. 
However, as the number of source nodes increases, the length of the tag increases because 

of random linear network coding. The tag may thus be longer than the data, which reduces 
transmission efficiency. 

 
Fig. 9. Computational complexity for the sink to decode messages 

6.3 Communication overhead 
Let h packets be generated, and the length of data is l bits. For source encoding, each packet is 
prefixed with h code words from a group of size n. Considering the ciphertext expansion of the 
Boneh–Goh–Nissim cryptosystem, we can calculate the communication overhead as 
2 log /h n l . 

6.4 Comparisons 
As a retrospect, in the following we compare our scheme with the other three schemes: basic 
random linear network coding, the privacy preserving scheme against traffic analysis in 
network coding proposed by Fan et al. [22], [23], and the privacy-preserving approach for the 
SG system proposed by Hasen et al. [9], [10].  

The result of the comparison is shown in Table 1. First, the four schemes are suit for the 
different flow models and topologies. In single flow model, there is only one source and one 
destination. In multicast flow model, there are a source and multiple destinations. There are 
multiple sources and a destination in converged flow model. Network coding can work with 
three flow model, [22], [23] is designed for multicast flow, [9], [10] is designed for single flow 
model, and our scheme is for converged flow model. Second, we claim that all the four 
schemes can prevent inside attack, and that only network coding cannot prevent outside attack. 
In the Dolev-Yao model [46], the goal of outside and inside attackers is to obtain information 
about the original packet. The inside attackers only modify its data, and do not pollute other 
forwarding packets. Therefore, in network coding, although the GEV is public, the inside 
attackers cannot get the information of the coded packets without h innovative packets. 
However, for the outsider attackers, it may receive all of the packets and examines the tags and 
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the data entering to the BS. It can receive h innovative packets and decode the packets to gain 
the information. Therefore, in the Dolev-Yao model, network coding cannot prevent outside 
attacker, but can prevent inside attacker.  Finally, we compare privacy features. We consider 
two types of the attackers such as a neighbor and a forwarder node [9], [10]. Several of the 
schemes may deliver the anonymity in case of forwarder nodes; however, the data is not 
anonymous for a neighbor. We also use the following symbols to describe each deliverable:  
 ''√'': Delivers the feature against all nodes. 
 ''○'': Delivers the feature only against forwarder nodes. 
 ''×'': Does not deliver the feature. 
 

Table 1. Comparison among our scheme and the other three schemes 
Class Network coding [22], [23] [9], [10] Our scheme 

Flow model Multicast, Single 
flow, Converged Multicast Single flow Converged 

Topology Dynamic Dynamic Static Dynamic 
Preventing  

inside attack √ √ √ √ 

Preventing  
outside attack × √ √ √ 

Anonymity ○ √ √ √ 
Unlinkability ○ ○ √ √ 

Undetectability ○ ○ √ √ 
Unobservability × × √ √ 

 
Table 2. Computational overhead of our scheme and the other three schemes 

Class Network 
coding 

[22], [23] [9], [10] Our scheme 

Setup / / ( )O m  / 

Source 2( )O h  2( log )O h n  (log )O n m+  (log )O n  

Forwarder 2( )O h  2( log )O h n  2( )O h  2( log )O h n  

Sink 3 2( )O h h l+  2 3 2( log )O h n h h l+ +  
2 3

2

( log
)

O h n h
h l m

+

+ +
 2 3 2( )O h T h h l+ +  

 
We compare their computational overhead in the setup phase, source, forwarder node, and 

sink as shown in Table 2. m is the number of sub-graphing in [9], [10], h is the number of 
original packets, n is the product of p and q which are distinct primes in cryptosystem, and T is 
the bound of the coefficient space, l is the length of the data. In [9] and [10], a setup phase is 
needed to divide sub-graph and assign the transfer matrix of sub-graph. Therefore, there is 

( )O m overhead in the setup phase. For fairness, only the process on tags is considered, and the 
encryption and decryption on data in [22], [23] and our scheme are ignored. From last two 
schemes we can see that, the computational overhead of our scheme is lower than that of the 
schemes of [9], [10] on setup phase and sink. Then, it is fair to conclude that our scheme 
outperforms the other three candidates in terms of thwarting outside attacks in SG. 

6.5 Simulation 
We implement our scheme and the Advanced Encryption Standard (AES) [50] for 
performance comparisons. AES is a symmetric block cipher that can encrypt and decrypt 
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information. It is a standardized encryption algorithm and has become the default choice in 
numerous applications. Different from our scheme, we implement the AES encryption 
algorithm in the network where each forwarder node needs to make decryption and encryption 
operation upon a packet’s tag. In this comparison, we implement our scheme in the network 
for data gathering. 

We take the end-to-end delay as the performance metric to evaluate performance. The 
above two algorithms are evaluated through extensive simulations using NS-2. In the 
simulations, 100 nodes are generated uniformly in a 600 m × 600 m area. The sink node is 
located in the center of the area. The maximum communication range of each node is set to 70 
meters. All the simulation results are obtained by averaging over 20 runs of simulations. To 
evaluate the performance of the proposed scheme, we set the simulated data size to 128 bits. 
All the nodes are set as source nodes and the length of tag is set to 400 bits.  

Fig. 10 shows the simulation results. The end-to-end delay of our scheme is correlated with 
the largest hop number from all source nodes to the sink. As expected, the end-to-end delay 
increases with the increase of the number of hops, as more node participation in data relays 
would invoke more homomorphic operations. The computational time to solve Eq.(2) with 
100 source nodes, i.e. Gt with 100 rows and 100 columns is 0.124s with Intel(R) Core(i3) CPU 
and 4G RAM. 

 
Fig. 10. End to end delay under different hop numbers. 

 
Compared with AES algorithm, our scheme has much lower end-to-end delay. AES 

algorithm requires every forwarder node to decrypt the received packet’s tag before making 
arithmetical operation on them; and then encrypts the operation results before forwarding. 
Both encryption and decryption operations introduce extra network latency. In contrast, our 
scheme frees the forwarder nodes from the complicated encryption and decryption operations. 
Forwarder nodes carry out arithmetical operation on the ciphertext as if they were plaintext, 
which saves much time for the whole process. 

7. Conclusion 
We propose a distributed privacy preserving scheme that considers the converged flows 
character of smart grid and exploits a homomorphic encryption function to decrease the 
complexity in forwarder node to solve privacy preserving in SG with random linear network 
coding. The data of the packet is encrypted and the tag of the packet is encrypted by 
homomorphic encryption function. Then the forwarder node random linearly codes the 
encrypted data and directly updates the cryptotext tags based on the homomorphic feature. The 
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scheme offers data confidentiality privacy preserving feature including anonymity, 
unlinkability, undetectability and unobservability, which can efficiently thwart traffic analysis, 
but pseudonymity, identity management. We conduct extensive performance evaluations and 
security analysis, which demonstrate that our scheme can effectively maintain privacy and 
have low computation and communication overhead. 
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